基于深度学习的无人机检测系统演示与介绍(YOLOv12/v11/v8/v5模型+Pyqt5界面+训练代码+数据集)
视频演示
1. 前言
大家好,欢迎来到 Coding茶水间!
近年来,无人机在物流配送、农业植保、安防巡检等领域的应用日益广泛,随之而来的空域安全问题也愈发凸显——未经授权的无人机闯入机场净空区、敏感设施上空或人群密集场所,可能引发严重的安全隐患与隐私风险。然而,传统的无人机检测方法多依赖雷达或射频信号监测,存在设备成本高、环境适应性差、对小目标识别率低等问题;部分视觉检测方案则局限于静态图片或单一视频源,难以满足实时监控、多场景巡检及批量数据分析的需求。随着深度学习技术的发展,YOLO 系列目标检测算法凭借其毫秒级推理速度与高精度特性,为动态环境下的无人机实时检测提供了全新思路。为此,我们本期推出 基于 YOLO 算法的无人机检测系统——它不仅能支持图片、视频、文件夹批量处理及实时摄像头流检测,还内置多版本模型切换、置信度与交并比调节、检测耗时与数量统计、类别统计、单目标详情展示、结果保存与 Excel 导出、语音播报及用户登录管理功能,并配套无界面脚本化调用与模型训练模块,帮助安防人员、空域管理者及开发者在不同场景下实现高效、可复用的无人机目标检测与数据管理。

2. 项目演示
2.1 用户登录界面
登录界面布局简洁清晰,左侧展示系统主题,用户需输入用户名、密码及验证码完成身份验证后登录系统。

2.2 新用户注册
注册时可自定义用户名与密码,支持上传个人头像;如未上传,系统将自动使用默认头像完成账号创建。

2.3 主界面布局
主界面采用三栏结构,左侧为功能操作区,中间用于展示检测画面,右侧呈现目标详细信息,布局合理,交互流畅。

2.4 个人信息管理
用户可在此模块中修改密码或更换头像,个人信息支持随时更新与保存。

2.5 多模态检测展示
系统支持图片、视频及摄像头实时画面的目标检测。识别结果将在画面中标注显示,并且带有语音播报提醒,并在下方列表中逐项列出。点击具体目标可查看其类别、置信度及位置坐标等详细信息。

2.6 检测结果保存
可以将检测后的图片、视频进行保存,生成新的图片和视频,新生成的图片和视频中会带有检测结果的标注信息,并且还可以将所有检测结果的数据信息保存到excel中进行,方便查看检测结果。
2.7 多模型切换
系统内置多种已训练模型,用户可根据实际需求灵活切换,以适应不同检测场景或对比识别效果。

3.模型训练核心代码
本脚本是YOLO模型批量训练工具,可自动修正数据集路径为绝对路径,从pretrained文件夹加载预训练模型,按设定参数(100轮/640尺寸/批次8)一键批量训练YOLOv5nu/v8n/v11n/v12n模型。
4. 技术栈
-
语言:Python 3.10
-
前端界面:PyQt5
-
数据库:SQLite(存储用户信息)
-
模型:YOLOv5、YOLOv8、YOLOv11、YOLOv12
5. YOLO模型对比与识别效果解析
5.1 YOLOv5/YOLOv8/YOLOv11/YOLOv12模型对比
基于Ultralytics官方COCO数据集训练结果:
|
模型 |
尺寸(像素) |
mAPval 50-95 |
速度(CPU ONNX/毫秒) |
参数(M) |
FLOPs(B) |
|---|---|---|---|---|---|
|
YOLO12n |
640 |
40.6 |
- |
2.6 |
6.5 |
|
YOLO11n |
640 |
39.5 |
56.1 ± 0.8 |
2.6 |
6.5 |
|
YOLOv8n |
640 |
37.3 |
80.4 |
3.2 |
8.7 |
|
YOLOv5nu |
640 |
34.3 |
73.6 |
2.6 |
7.7 |
关键结论:
-
精度最高:YOLO12n(mAP 40.6%),显著领先其他模型(较YOLOv5nu高约6.3个百分点);
-
速度最优:YOLO11n(CPU推理56.1ms),比YOLOv8n快42%,适合实时轻量部署;
-
效率均衡:YOLO12n/YOLO11n/YOLOv8n/YOLOv5nu参数量均为2.6M,FLOPs较低(YOLO12n/11n仅6.5B);YOLOv8n参数量(3.2M)与计算量(8.7B)最高,但精度优势不明显。
综合推荐:
-
追求高精度:优先选YOLO12n(精度与效率兼顾);
-
需高速低耗:选YOLO11n(速度最快且精度接近YOLO12n);
-
YOLOv5nu/YOLOv8n因性能劣势,无特殊需求时不建议首选。
5.2 数据集分析

数据集中训练集和验证集一共810张图片,数据集目标类别1种:裂缝,数据集配置代码如下:


上面的图片就是部分样本集训练中经过数据增强后的效果标注。
5.3 训练结果

混淆矩阵显示中识别精准度显示是一条对角线,方块颜色越深代表对应的类别识别的精准度越高。

F1指数(F1 Score)是统计学和机器学习中用于评估分类模型性能的核心指标,综合了模型的精确率(Precision)和召回率(Recall),通过调和平均数平衡两者的表现。
当置信度为0.408时,所有类别的综合F1值达到了0.96(蓝色曲线)。

mAP@0.5:是目标检测任务中常用的评估指标,表示在交并比(IoU)阈值为0.5时计算的平均精度均值(mAP)。其核心含义是:只有当预测框与真实框的重叠面积(IoU)≥50%时,才认为检测结果正确。
图中可以看到综合mAP@0.5达到了0.971(97.1%),准确率非常高。

本文介绍了基于YOLO系列算法的无人机检测系统开发。系统支持图片、视频及实时摄像头检测,具备多模型切换、结果保存与导出、用户管理等功能。通过对比YOLOv5/v8/v11/v12模型性能,发现YOLO12n精度最高(mAP40.6%),YOLO11n速度最优(56.1ms)。系统采用PyQt5界面,SQLite数据库,提供完整的模型训练代码和数据集配置方案,检测准确率达97.1%。适用于安防巡检、空域管理等场景的无人机实时监测需求。


浙公网安备 33010602011771号