tcp syn-synack-ack 服务端 接收 SYN tcp_v4_do_rcv分析

rcv 分析:

 

/* The socket must have it's spinlock held when we get
 * here, unless it is a TCP_LISTEN socket.
 *
 * We have a potential double-lock case here, so even when
 * doing backlog processing we use the BH locking scheme.
 * This is because we cannot sleep with the original spinlock
 * held.
 Tcp的处理中使用了三个队列,receive_queue,backlog_queue,pre_queue,在数据包到达tcp协议栈时,持有sk自旋锁,
然后检查当前使用有进程上下文操作sk的逻辑,通过sock_owned_by_user判断,如果sk_lock.owned被赋值说明进程持有sk,
如果为0则可以在当前软中断上下文中,继续数据报文的处理。
 */
 /*
 * TCP传输层接收到段之后,经过了简单的
 * 校验,并确定接收处理该段的传输控制
 * 块之后,除非处于FIN_WAIT_2或TIME_WAIT状态,
 * 否则都会调用tcp_v4_do_rcv()作具体的处理
 对于协议栈的接收路径,syn包的处理路径如下

tcp_v4_rcv
->__inet_lookup_skb() //listen hash中找到对应的TCP_LISTEN的sk
->tcp_v4_do_rcv()
->tcp_v4_cookie_check() //syncookie检查,因为没有syn包没有ack选项,因此忽略, 如果syncookie验证通过则创建新的sock
->tcp_rcv_state_process()
->tcp_v4_conn_request()
对于syncookie,服务端不保存任何状态
对于fastopen,新建sock进入TCP_SYN_RCV状态, 并插入等待accpet队列,并把数据部分放倒接收队列中, 并设置重传定时器
对于一般的syn包,request_sock设置为TCP_NEW_SYN_RECV,插入ehash表, 设置req_timer定时器,重传synack
 */
int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb)
{
    struct sock *rsk;

    if (sk->sk_state == TCP_ESTABLISHED) { /* Fast path */
        struct dst_entry *dst = sk->sk_rx_dst;

        sock_rps_save_rxhash(sk, skb);
        sk_mark_napi_id(sk, skb);
        if (dst) {
            if (inet_sk(sk)->rx_dst_ifindex != skb->skb_iif ||
                !dst->ops->check(dst, 0)) {
                dst_release(dst);
                sk->sk_rx_dst = NULL;
            }
        }
        tcp_rcv_established(sk, skb, tcp_hdr(skb), skb->len);
        return 0;
    }

    if (tcp_checksum_complete(skb))
        goto csum_err;

    if (sk->sk_state == TCP_LISTEN) {//说明收到的是三次握手第一步SYN或者第三步ACK,这里是服务器端的情况
        struct sock *nsk = tcp_v4_cookie_check(sk, skb);
//syncookie检查,因为没有syn包没有ack选项,因此忽略, 如果syncookie验证通过则创建新的
        if (!nsk)
            goto discard;
        /*/如果是第一次握手的SYN,这里的nsk应该是'父'sk, 
        如果这里是三次握手的第三步ACK,则这里的nsk是‘子'sk
        */
        if (nsk != sk) {
            sock_rps_save_rxhash(nsk, skb);
            sk_mark_napi_id(nsk, skb);
            if (tcp_child_process(sk, nsk, skb)) { //这里面还是会调用tcp_rcv_state_proces
                rsk = nsk;
                goto reset;
            }
            return 0;//如果是握手的第三步,这里直接退出
        } //如果是三次握手中的第一步SYN,则继续后面的操作
    } else
        sock_rps_save_rxhash(sk, skb);
//走到这里说明只能是客户端收到SYN+ACK,或者是服务器端收到SYN
    if (tcp_rcv_state_process(sk, skb)) {
        rsk = sk;
        goto reset;
    }
    return 0;

reset:
    tcp_v4_send_reset(rsk, skb);
discard:
    kfree_skb(skb);
    /* Be careful here. If this function gets more complicated and
     * gcc suffers from register pressure on the x86, sk (in %ebx)
     * might be destroyed here. This current version compiles correctly,
     * but you have been warned.
     */
    return 0;

csum_err:
    TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS);
    TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
    goto discard;

 

tcp_rcv_state_process

/*
 *    This function implements the receiving procedure of RFC 793 for
 *    all states except ESTABLISHED and TIME_WAIT.
 *    It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
 *    address independent.
 */

int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb)
{
    struct tcp_sock *tp = tcp_sk(sk);
    struct inet_connection_sock *icsk = inet_csk(sk);
    const struct tcphdr *th = tcp_hdr(skb);
    struct request_sock *req;
    int queued = 0;
    bool acceptable;

    switch (sk->sk_state) {
    case TCP_CLOSE:
        goto discard;

    case TCP_LISTEN:
        //服务器端收到SYN
        /*
         * 在半连接的LISTEN状态下,只处理SYN段。如果是
         * ACK段,此时连接尚未开始建立,因此返回1。在调用
         * tcp_rcv_state_process()函数中会给对方发送RST段;
         * 如果接收的是RST段,则丢弃
         */
        if (th->ack)
            return 1;

        if (th->rst)
            goto discard;

        if (th->syn) {
            if (th->fin)
                goto discard;
            /*
             * 处理SYN段,主要由conn_request接口(TCP中为tcp_v4_conn_request)处理,
             * icsk_af_ops成员在创建套接字时被初始化,参见tcp_v4_init_sock()
             */
             /*收到三次握手的第一步SYN,
                则在tcp_v4_conn_request中创建连接请求控制块request_sock
                */
            if (icsk->icsk_af_ops->conn_request(sk, skb) < 0)//ipv4_specific--->tcp_v4_conn_request
                return 1;

            consume_skb(skb);
            return 0;
        }
        goto discard;

    case TCP_SYN_SENT://客户端收到SYN+ACK
    /*
对于TCP_SYN_SENT状态的sock,会调用tcp_rcv_synsent_state_process来进行处理
解析tcp选项,获取服务端的支持情况, 比如sack, TFO, wscale, MSS, timestamp等
如果有ack, 进行tcp_ack, 这时候可能fastopen确认了之前的数据
调用tcp_finish_connect,TCP_SYN_SENT->TCP_ESTABLISHED
如果包含fastopen cookie则保存
判断是否需要立即ack还是延时ack
如果包里没有ack,只有syn,则表示相互connect, TCP_SYN_SENT->TCP_SYN_RECV, 并发送synack 
    */
        tp->rx_opt.saw_tstamp = 0;
        queued = tcp_rcv_synsent_state_process(sk, skb, th);
        if (queued >= 0)
            return queued;

        /* Do step6 onward by hand. */
        tcp_urg(sk, skb, th);
        __kfree_skb(skb);
        tcp_data_snd_check(sk);
        return 0;
    }

    tp->rx_opt.saw_tstamp = 0;
    req = tp->fastopen_rsk;
    if (req) {
        WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV &&
            sk->sk_state != TCP_FIN_WAIT1);

        if (!tcp_check_req(sk, skb, req, true))
            goto discard;
    }

    if (!th->ack && !th->rst && !th->syn)
        goto discard;

    if (!tcp_validate_incoming(sk, skb, th, 0))
        return 0;
/*
         * 处理TCP段ACK标志,tcp_ack()返回非零值表示处理
         * ACK段成功,是正常的第三次握手TCP段
         */
    /* step 5: check the ACK field */
    acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH |
                      FLAG_UPDATE_TS_RECENT) > 0;
/*
tcp_rcv_state_process函数中对于ack的处理步骤中,假如连接处于FIN_WAIT_1,
且数据均已经被确认完,则进入TIME_WAIT_2状态;如果无需在该状态等待(linger2<0),
或者收到了乱序数据段,则直接关闭连接;如果需要等待,
则需要判断等待时间与TIMEWAIT时间的大小关系,若>TIMEWAIT_LEN,
则添加TIME_WAIT_2定时器,否则直接进入TIME_WAIT接管(其子状态仍然是FIN_WAIT_2),
接管之后会添加TIME_WAIT定时器;
*/
    switch (sk->sk_state) {
    case TCP_SYN_RECV:
        if (!acceptable)
            return 1;

        if (!tp->srtt_us)
            tcp_synack_rtt_meas(sk, req);
/*/这里是由tcp_v4_do_rcv里面的tcp_child_process走到这里,
在tcp_child_process前会通过tcp_check_req创建一个新的struct sock
         Once we leave TCP_SYN_RECV, we no longer need req
         * so release it.
         */
        if (req) {
            tp->total_retrans = req->num_retrans;
            reqsk_fastopen_remove(sk, req, false);
        } else {
            /* Make sure socket is routed, for correct metrics. */
            icsk->icsk_af_ops->rebuild_header(sk);
            tcp_init_congestion_control(sk);

            tcp_mtup_init(sk);
            tp->copied_seq = tp->rcv_nxt;
            tcp_init_buffer_space(sk);
        }
        smp_mb();
        tcp_set_state(sk, TCP_ESTABLISHED);// TCP_SYN_RECV->TCP_ESTABLISHED
        sk->sk_state_change(sk);//sock_def_wakeup, 唤醒epoll
/*
sock_init_data中 有
sk->sk_state_change    =    sock_def_wakeup;
sk->sk_data_ready    =    sock_def_readable;
sk->sk_write_space    =    sock_def_write_space;
sk->sk_error_report    =    sock_def_error_report;
sk->sk_destruct        =    sock_def_destruct;
*/
//epoll然后调用ep_send_events->ep_scan_ready_list->ep_send_events_proc->ep_item_poll->tcp_poll
 /*
                 * 设置"子"传输控制块为ESTABLISHED状态
                 */
        /* Note, that this wakeup is only for marginal crossed SYN case.
         * Passively open sockets are not waked up, because
         * sk->sk_sleep == NULL and sk->sk_socket == NULL.
         */
         /*
                 * 发信号给那些将通过该套接字发送数据的进程,
                 * 通知他们套接字目前已经可以发送数据了
     sk_state_change()->sock_def_wakeup()->ep_poll_callback(), 添加到epoll的ready list中,并唤醒阻塞中的epoll。
epoll然后调用ep_send_events->ep_scan_ready_list->ep_send_events_proc->ep_item_poll->tcp_poll
                 */
                 
        if (sk->sk_socket)
            sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
     /*
                 * 初始化传输控制块各字段,如果存在时间戳选项,
                 * 同时平滑RTT为零,则需计算重传超时时间等
                 */
        tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
        tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale;
        tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);

        if (tp->rx_opt.tstamp_ok)
            tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;

        if (req) {
            /* Re-arm the timer because data may have been sent out.
             * This is similar to the regular data transmission case
             * when new data has just been ack'ed.
             *
             * (TFO) - we could try to be more aggressive and
             * retransmitting any data sooner based on when they
             * are sent out.
             */
            tcp_rearm_rto(sk);
        } else
            tcp_init_metrics(sk);
/*
                 * 为该套接字建立路由,初始化拥塞控制模块
                 */
                  /*
                 * 初始化与路径MTU有关的成员
                 */
        tcp_update_pacing_rate(sk);
/*
                 * 更新最近一次发送数据包的时间
                 */
        /* Prevent spurious tcp_cwnd_restart() on first data packet */
        tp->lsndtime = tcp_time_stamp;

        tcp_initialize_rcv_mss(sk);
        /*
                 * 计算有关TCP首部预测的标志
                 */
        tcp_fast_path_on(tp);
        break;

    case TCP_FIN_WAIT1: {
        struct dst_entry *dst;
        int tmo;

        /* If we enter the TCP_FIN_WAIT1 state and we are a
         * Fast Open socket and this is the first acceptable
         * ACK we have received, this would have acknowledged
         * our SYNACK so stop the SYNACK timer.
         */
        if (req) {
            /* Return RST if ack_seq is invalid.
             * Note that RFC793 only says to generate a
             * DUPACK for it but for TCP Fast Open it seems
             * better to treat this case like TCP_SYN_RECV
             * above.
             */
            if (!acceptable)
                return 1;
            /* We no longer need the request sock. */
            reqsk_fastopen_remove(sk, req, false);
            tcp_rearm_rto(sk);
        }        /* 发送数据未确认完毕 */
        if (tp->snd_una != tp->write_seq)
            break;

        tcp_set_state(sk, TCP_FIN_WAIT2); /* 进入FIN_WAIT_2状态 */
        sk->sk_shutdown |= SEND_SHUTDOWN;/* 关闭发送端 */

        dst = __sk_dst_get(sk);
        if (dst)/* 路由缓存确认 */
            dst_confirm(dst);

        if (!sock_flag(sk, SOCK_DEAD)) {
            /* Wake up lingering close() */
            sk->sk_state_change(sk); /* 套接口不是DEAD状态,状态发生变化,唤醒等待进程 */
            break;
        }
 /* linger2<0,无需在FIN_WAIT_2等待 */
        if (tp->linger2 < 0 || /* 收到期望序号以后的数据段(data, fin) */
            (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
             after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
            tcp_done(sk);/* 关闭连接 */
            NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
            return 1;
        }

        tmo = tcp_fin_time(sk); /* 获取FIN_WAIT_2等待时间 */
        if (tmo > TCP_TIMEWAIT_LEN) {  /* > TIMEWAIT_LEN,加入FIN_WAIT_2定时器 */
            inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
        } else if (th->fin || sock_owned_by_user(sk)) {
            /* Bad case. We could lose such FIN otherwise.
             * It is not a big problem, but it looks confusing
             * and not so rare event. We still can lose it now,
             * if it spins in bh_lock_sock(), but it is really
             * marginal case.
             */ /* 有fin?? 或者 被用户进程锁定,加入FIN_WAIT_2定时器 */
            inet_csk_reset_keepalive_timer(sk, tmo);
        } else { /* 正常等待时间< TIMEWAIT_LEN,进入TIMEWAIT接管状态 */
            tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
            goto discard;
        }
        break;
    }

    case TCP_CLOSING:
        if (tp->snd_una == tp->write_seq) {
            tcp_time_wait(sk, TCP_TIME_WAIT, 0);
            goto discard;
        }
        break;

    case TCP_LAST_ACK:
        if (tp->snd_una == tp->write_seq) {
            tcp_update_metrics(sk);
            tcp_done(sk);
            goto discard;
        }
        break;
    }

    /* step 6: check the URG bit */
    tcp_urg(sk, skb, th);
/*
FIN_WAIT_2状态的走向有以下几个流程触发点,
(1)TIME_WAIT_2定时器未超时时间内,收到数据段触发; 
(2)TIME_WAIT_2定时器超时触发; 
(3)TIME_WAIT定时器未超时时间内,收到数据段触发;
(4)TIME_WAIT定时器超时触发;
*/
    /* step 7: process the segment text */
    switch (sk->sk_state) {
    case TCP_CLOSE_WAIT:
    case TCP_CLOSING:
    case TCP_LAST_ACK:
        if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
            break;
    case TCP_FIN_WAIT1:
    case TCP_FIN_WAIT2://TIME_WAIT_2定时器未超时时间内,收到数据段触发,如果设置FIN标记,则直接进入TIME_WAIT状态;
        /* RFC 793 says to queue data in these states,
         * RFC 1122 says we MUST send a reset.
         * BSD 4.4 also does reset.
         */
        if (sk->sk_shutdown & RCV_SHUTDOWN) {
            if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
                after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
                NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
                tcp_reset(sk);
                return 1;
            }
        }
        /* Fall through */
    case TCP_ESTABLISHED:
        tcp_data_queue(sk, skb);
        queued = 1;
        break;
    }

    /* tcp_data could move socket to TIME-WAIT */
    if (sk->sk_state != TCP_CLOSE) {
        tcp_data_snd_check(sk);
        tcp_ack_snd_check(sk);
    }

    if (!queued) {
discard:
        tcp_drop(sk, skb);
    }
    return 0;
}

tcp_v4_conn_request

/*
//服务器端收到SYN后,创建连接控制块request_sock
。也就是收到第一步SYN的时候只是建立的连接控制块request_sock
,当收到第三次ack的时候,才创建新的struct sock
*/
int tcp_conn_request(struct request_sock_ops *rsk_ops,
             const struct tcp_request_sock_ops *af_ops,
             struct sock *sk, struct sk_buff *skb)
{
    struct tcp_fastopen_cookie foc = { .len = -1 };
    __u32 isn = TCP_SKB_CB(skb)->tcp_tw_isn;
    struct tcp_options_received tmp_opt;
    struct tcp_sock *tp = tcp_sk(sk);
    struct net *net = sock_net(sk);
    struct sock *fastopen_sk = NULL;
    struct dst_entry *dst = NULL;
    struct request_sock *req;
    bool want_cookie = false;
/*如果启用了cookie机制,则会在第三步收到ACK的时候在tcp_v4_hnd_req中 
的cookie_v4_check对之前发送的ack+syn进行检查,检查过程见cookie_v4_check
    */struct flowi fl;

    /* TW buckets are converted to open requests without
     * limitations, they conserve resources and peer is
     * evidently real one.
     */
    if ((net->ipv4.sysctl_tcp_syncookies == 2 ||//sysctl_tcp_syncookies=2无条件生成syncookie
         inet_csk_reqsk_queue_is_full(sk)) && !isn) {//或者请求队列太长, 并且当前不是timewait
        want_cookie = tcp_syn_flood_action(sk, skb, rsk_ops->slab_name);//sysctl_tcp_syncookies>0, 并未当前socket打印一次告警
        if (!want_cookie)//队列满了,但不使用syncookie,则丢弃
            goto drop;
    }


    /* Accept backlog is full. If we have already queued enough
     * of warm entries in syn queue, drop request. It is better than
     * clogging syn queue with openreqs with exponentially increasing
     * timeout.
     */
     /*
     * 如果连接队列长度已达到上限且SYN请求队列中至少有一个握手过程中
     * 没有重传过的段,则丢弃当前连接请求.
     *  如果半连接队列中未重传的请求块数量大于1,
     * 则表示未来可能有2个完成的连接,这些新完成
     * 的连接要放到连接队列中,但此时连接队列已满
     * 。如果在接收到三次握手中最后的ACK后连接队列
     * 中没有空闲的位置,会忽略接收到的ACK包,连接
     * 建立会推迟,所以此时最好丢掉部分新的连接请
     * 求,空出资源以完成正在进行的连接建立过程。
     * 还要注意,这个判断并没有考虑半连接队列是否
     * 已满的问题。从这里可以看出,即使开启了
     * SYN cookies机制并不意味着一定可以完成连接的建立。
     * 
     */
    if (sk_acceptq_is_full(sk) && inet_csk_reqsk_queue_young(sk) > 1) {//accept队列满,但是syn队列依然有可能被accept的连接,此时丢弃
        NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
        goto drop;
    }
    
    /*
     * 可以接收并处理连接请求,调用inet_reqsk_alloc()分配一个连接请求
     * 块,用于保存连接请求信息,同时初始化在建立连接过程中用来发送
     * ACK、RST段的操作集合,以便在建立连接过程中能方便地调用这些接口
     */
//rsk_ops  ===tcp_request_sock_ops
    req = inet_reqsk_alloc(rsk_ops, sk, !want_cookie);//分配request_sock, 进入TCP_NEW_SYN_RECV状态
    if (!req)
        goto drop;
//af_ops====tcp_request_sock_ipv4_opss
    tcp_rsk(req)->af_specific = af_ops;//tcp_request_sock_ipv4_ops
/*
     * 清除TCP选项后初始化mss_clamp和user_mss。
     */
    tcp_clear_options(&tmp_opt);
    tmp_opt.mss_clamp = af_ops->mss_clamp;//TCP_MSS_DEFAULT=536
    tmp_opt.user_mss  = tp->rx_opt.user_mss;//listen sock设置的或是tw的
    
    /*
     * 解析SYN段中的TCP选项
     */
    tcp_parse_options(skb, &tmp_opt, 0, want_cookie ? NULL : &foc);//开启syncookie后则不用考虑fastopen, syncookie不允许使用tcp扩展

    if (want_cookie && !tmp_opt.saw_tstamp)    //开启syncookie,但是不带timestamp
        tcp_clear_options(&tmp_opt);//清除wscale,sack_ok等选项,因为没地方存
/*
     * 初始化该连接中是否启用时间戳的选项tstamp_ok
     */
    tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
/*
     * 根据接收到SYN段中的选项和序号来初始化连接请求块信息
     */
    tcp_openreq_init(req, &tmp_opt, skb, sk);

    /* Note: tcp_v6_init_req() might override ir_iif for link locals */
    inet_rsk(req)->ir_iif = inet_request_bound_dev_if(sk, skb);
/*
     * 初始化TCP层次的连接请求信息块,包括目的地址、源地址,
     * 并调用tcp_v4_save_options从IP层私有控制块中获取IP
     * 选项保存到传输控制块的opt中,包括MSS、窗口扩大
     * 因子、显式拥塞通知等
     */
    af_ops->init_req(req, sk, skb);//tcp_v4_init_req  会调用tcp_v4_save_options

    if (security_inet_conn_request(sk, skb, req))
        goto drop_and_free;

    if (!want_cookie && !isn) {//不需要生成syncookie,也不是从timewait recycle的新的sock
        /* VJ's idea. We save last timestamp seen
         * from the destination in peer table, when entering
         * state TIME-WAIT, and check against it before
         * accepting new connection request.
         *
         * If "isn" is not zero, this request hit alive
         * timewait bucket, so that all the necessary checks
         * are made in the function processing timewait state.
         */
         /*
         * 进入TIMEWAIT状态时,从对端信息块中获取时间戳,在新的
         * 连接请求之前检测PAWS
         */
        if (tcp_death_row.sysctl_tw_recycle) {
            bool strict;

            dst = af_ops->route_req(sk, &fl, req, &strict);    //tcp_v4_route_req
 //当起了快速回收tw_recycle的时候,这里可能有问题,可能连接建立不上,针对TCP时间戳PAWS漏洞的代码。 见:http://blog.chinaunix.net/uid-736168-id-376061.html
                //针对TCP时间戳PAWS漏洞,造成服务器端收到SYN的时候不回收SYN+ACK,解决办法是对方不要发送时间戳选项,同时关闭tcp_timestamps见tcp_v4_conn_request
            if (dst && strict &&
                !tcp_peer_is_proven(req, dst, true,
                        tmp_opt.saw_tstamp)) {
                NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSPASSIVEREJECTED);
                goto drop_and_release;
                /*
1 tcp的option有 time stamp字段.

2 tcp_tw_recycle有设置。

3 在路由表中是否存在完全相同的流(如果打开了xfrm的话,
还要比较端口,默认xfrm应该是打开的),如果存在则直接返回.

4 并且数据包的源地址和新请求的源地址相同.

5 根据路由表以及源地址能够查找到保存的peer
(这个可以看我以前的blog,也就是保存了一些连接统计信息).

6 当前时间(接收到syn)比最后一次的时间(time stamp)小于60秒.

7 已经存在peer的最近一次时间戳要大于当前请求进来的时间戳.
从上面可以看到,上面的条件中1/2都是 server端可以控制的,而其他的条件,
都是很容易就满足的,因此我们举个例子。

如果客户端是NAT出来的,并且我们server端有打开tcp_tw_recycle ,
并且time stamp也没有关闭,那么假设第一个连接进来,然后关闭,此时这个句柄处于time wait状态,然后很快(小于60秒)又一个客户端(相同的源地址,如果打开了xfrm还要相同的端口号)发一个syn包,此时linux内核就会认为这个数据包异常的,因此就会丢掉这个包,并发送rst。

而现在大部分的客户端都是NAT出来的,因此建议tw_recycle还
是关闭,或者说server段关闭掉time stamp(/proc/sys/net/ipv4/tcp_timestamps).
                */
            }
        }
        /* Kill the following clause, if you dislike this way. */
        //如果没开启sysctl_tw_recycle和syncookie,最后1/4的syn请求需要验证过去的连接信?
        /*
         * 未启动syncookies的情况下受到synflood攻击,则丢弃接收到的段
         */
        else if (!net->ipv4.sysctl_tcp_syncookies &&
             (sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
              (sysctl_max_syn_backlog >> 2)) &&
             !tcp_peer_is_proven(req, dst, false,
                         tmp_opt.saw_tstamp)) {//如果不存在tcp metric或者过去的连接信息则丢弃
            /* Without syncookies last quarter of
             * backlog is filled with destinations,
             * proven to be alive.
             * It means that we continue to communicate
             * to destinations, already remembered
             * to the moment of synflood.
             */
            pr_drop_req(req, ntohs(tcp_hdr(skb)->source),
                    rsk_ops->family);
            goto drop_and_release;
        }

        isn = af_ops->init_seq(skb);//tcp_v4_init_sequence,根据四元组,随机数,当前高精度时间来生成isn
    }
    if (!dst) {
        dst = af_ops->route_req(sk, &fl, req, NULL);//tcp_v4_route_req
        if (!dst)
            goto drop_and_free;
    }

    tcp_ecn_create_request(req, skb, sk, dst);

    if (want_cookie) {
        /*
         * 如果启动了syncookies,则每60秒警告一次可能受
         * synflood攻击,同时由客户端IP地址、客户端端口、
         * 服务器IP地址、服务器端口、客户端初始序列号
         * 等要素经hash运算后加密得到服务端初始化序列号
         */
         //如果开启了syncookie选项,则需要检查收到的第三步ack和这个isn值是否一致
        isn = cookie_init_sequence(af_ops, sk, skb, &req->mss);
        //cookie_v4_init_sequence生成syncookie,并作为ack的起始序号
        req->cookie_ts = tmp_opt.tstamp_ok;
        if (!tmp_opt.tstamp_ok)
            inet_rsk(req)->ecn_ok = 0;
    }

    tcp_rsk(req)->snt_isn = isn;
    tcp_rsk(req)->txhash = net_tx_rndhash();
    tcp_openreq_init_rwin(req, sk, dst);//设置初始化rwnd
    if (!want_cookie) {
        tcp_reqsk_record_syn(sk, req, skb);//如果设置保存TCP_SAVE_SYN标记,则保存
        fastopen_sk = tcp_try_fastopen(sk, skb, req, &foc, dst);
        //验证后创建fastopen sock,并把数据部分放入接收队列中
    }
    if (fastopen_sk) {//验证并创建fastsocket成功, 进入TCP_SYN_RCV状态
        af_ops->send_synack(fastopen_sk, dst, &fl, req,
                    &foc, TCP_SYNACK_FASTOPEN);//tcp_v4_send_synac
        /* Add the child socket directly into the accept queue */
        inet_csk_reqsk_queue_add(sk, req, fastopen_sk);//添加到等待accept的队列
        sk->sk_data_ready(sk);
        bh_unlock_sock(fastopen_sk);
        sock_put(fastopen_sk);
    } else {
        tcp_rsk(req)->tfo_listener = false;
        if (!want_cookie)
            inet_csk_reqsk_queue_hash_add(sk, req, TCP_TIMEOUT_INIT);//插入ehash,并设置定时器
        af_ops->send_synack(sk, dst, &fl, req, &foc,
                    !want_cookie ? TCP_SYNACK_NORMAL :
                           TCP_SYNACK_COOKIE);//tcp_v4_send_synack
        if (want_cookie) {
            reqsk_free(req);//启用syncookie的话,可以直接释放req
            return 0;
        }
    }
    reqsk_put(req);
    return 0;

drop_and_release:
    dst_release(dst);
drop_and_free:
    reqsk_free(req);
drop:
    tcp_listendrop(sk);
    return 0;
}
EXPORT_SYMBOL(tcp_conn_request);

 

inet_csk_reqsk_queue_hash_add

把req放入ehash中,并设置rsk_timer定时器

 

 

posted @ 2019-07-05 00:47  codestacklinuxer  阅读(1364)  评论(0编辑  收藏  举报