PAT A1155 Heap Paths (30 分)
In computer science, a heap is a specialized tree-based data structure that satisfies the heap property: if P is a parent node of C, then the key (the value) of P is either greater than or equal to (in a max heap) or less than or equal to (in a min heap) the key of C. A common implementation of a heap is the binary heap, in which the tree is a complete binary tree. (Quoted from Wikipedia at https://en.wikipedia.org/wiki/Heap_(data_structure))
One thing for sure is that all the keys along any path from the root to a leaf in a max/min heap must be in non-increasing/non-decreasing order.
Your job is to check every path in a given complete binary tree, in order to tell if it is a heap or not.
Input Specification:
Each input file contains one test case. For each case, the first line gives a positive integer N (1<N≤1,000), the number of keys in the tree. Then the next line contains N distinct integer keys (all in the range of int), which gives the level order traversal sequence of a complete binary tree.
Output Specification:
For each given tree, first print all the paths from the root to the leaves. Each path occupies a line, with all the numbers separated by a space, and no extra space at the beginning or the end of the line. The paths must be printed in the following order: for each node in the tree, all the paths in its right subtree must be printed before those in its left subtree.
Finally print in a line Max Heap if it is a max heap, or Min Heap for a min heap, or Not Heap if it is not a heap at all.
Sample Input 1:
8
98 72 86 60 65 12 23 50
Sample Output 1:
98 86 23
98 86 12
98 72 65
98 72 60 50
Max Heap
Sample Input 2:
8
8 38 25 58 52 82 70 60
Sample Output 2:
8 25 70
8 25 82
8 38 52
8 38 58 60
Min Heap
Sample Input 3:
8
10 28 15 12 34 9 8 56
Sample Output 3:
10 15 8
10 15 9
10 28 34
10 28 12 56
Not Heap
实现思路:
在1147这题的基础上进行了修改,要求从树的右边到左边输出根节点到叶结点路径的值,很简单采用递归遍历,并且用一个vector数组来保存序列值再输出即可。
AC代码:
#include <iostream>
#include <vector>
using namespace std;
const int N=1001;
int heap[N],n,m,val,cnt=0;
bool tag,isMin,isMax;
vector<int> temp;
void Print(int x) {
if(x>m) return;
temp.push_back(heap[x]);
if(x*2+1>m&&x*2>m) {
for(int i=0; i<temp.size(); i++) {
printf("%d",temp[i]);
if(i<temp.size()-1) printf(" ");
else printf("\n");
}
}
Print(x*2+1);
Print(x*2);
temp.pop_back();
}
bool judge() {
for(int i=1; i<=m/2; i++) {
if(isMax) {
if(i*2<=m&&heap[i]<heap[i*2]) isMax=false;
else if(i*2+1<=m&&heap[i]<heap[i*2+1]) isMax=false;
} else {
if(i*2<=m&&heap[i]>=heap[i*2]) isMin=false;
else if(i*2+1<=m&&heap[i]>=heap[i*2+1]) isMin=false;
}
}
}
int main() {
cin>>m;
for(int i=1; i<=m; i++) {
scanf("%d",&heap[i]);
}
tag=true;
isMax=isMin=false;
if(heap[1]>=heap[2]) {
if(3<=m&&!heap[1]>=heap[3]) isMax=false;;
isMax=true;
} else {
if(3<=m&&!heap[1]<heap[3]) isMin=false;
isMin=true;
}
Print(1);
judge();
if(isMax) printf("Max Heap");
else if(isMin) printf("Min Heap");
else printf("Not Heap");
return 0;
}

浙公网安备 33010602011771号