Solution Set - 杭电多校 2022 Day2 一句话题解
A:看了题就很容易想到虚树吧,建出虚树后考虑整体扫一遍虚树,注意到这是一棵根向树,那么统计其实十分简单,将对 \(C\) 类节点的标记下放,\(A,B\) 类节点同时上传,如果在 DFS 的过程中发现这个节点可以被 \(A,B\) 类节点同时到达,则分讨取 \(u\) 还是取 \((u,fa)\) 即可,时间复杂度瓶颈在建立虚树,可以使用一些技巧做到线性吧。
B:沙比提/oh
C:不知道正解是啥,实际上可以直接暴力然后循环展开就碾过去了。隔壁队伍 vector 纯暴力都过了/oh
D:很明显,我不会三维几何。
E:赛时咋不读题呢?傻逼题错过了。如果可以确定一个技能影响的区间,问题变为区间可重覆盖方案计数,至此问题被分为两部分:
首先先考虑如何确定区间,考虑先求单边的,比如说先求右边,考虑使用排序制造单调性,将怪物按 \(a_i-b_{i+1}\) 从大到小排序,将技能按 \(R_i\) 从大到小排序,使用并查集维护被连锁的怪物即可。
接下来考虑 DP,设 \(f_i\) 表示 \(1\sim i\) 被完全覆盖的方案数,按右端点从小到大扫描每一个覆盖区间 \([l,r]\),有 DP 转移式:\(f_r\to \sum_{i=l-1}^r f_i\),\(\forall0\le i\le l-2, f_i\to f_i\times 2\)。
使用支持区间乘,单点加的线段树维护即可,时间复杂度线性对数。
F:设 \(f_i\) 表示升级到 \(i\) 所需的期望次数,考虑一本升级书 \((a,b)\):
- 用:\(f_{i+1}\to f_i+1+(1-a)(1-b)(f_{i+1}-f_i)+(1-a)b f_{i+1}=(1-a)f_{i+1}+(a+b-ab)f_i+1\),后两项的含义是加上失败和报废的概率。
- 不用:\(f_{i+1}\to f_{i+1}+1\)。
所以说 \(f_{i+1}\to \frac1{AB}\sum_{a,b}\min\{(1-a)f_{i+1}+(a+b-ab)f_i+1,f_{i+1}+1\}\),\(\min\) 不好转移,使用一些分类讨论的操作,考察:
化简后变成:
这个时候我们找到了一些性质,即按 \(\frac{a+b-ab}{a}\) 排序后的二元组,一定是一段前缀使用,剩下的一定不用,枚举这段前缀的长度 \(t\),有:
考察在特定 \(t\) 下的式子,记 \(x=\sum_{a,b\text{ pre }t}(1-a),y=\sum_{a,b\text{ pre }t}(a+b-ab)\),\(x\) 和 \(y\) 可以随意维护:
化简一下可以得到:
直接计算即可,时间复杂度为 \(O(ABK)\)。
G:有人老老实实读完了题面,我不说是谁。
H:对连续段进行哈希,为了比较方便特别处理首段和末段就行了。
I:听说很简单,不是我写的就鸽了。
J:恶臭题,注意到小 A 会走任意一棵最大生成树,根据最大生成树的形态,可以将图上的边分为三种:
- 关键边,无论如何,最大生成树上一定会包含这条边。
- 关建边,最大生成树上可能包含的边。
- 没用边,无论如何,最大生成树上一定不会有的边。
按边权排序后将相同边权的边放在一起处理,对于 Kruskal 中维护的连通块,连出相同边权的边(不连自环)后使用 Tarjan 算法求出桥边即可,因为桥边一定是关键边,自环则一定是没用边,其他被建出的边一定是关建边,如果此时 Kruskal 过程结束了,那么剩下的边就是没用边。
如果存在关键边,放一个人在关键边即可,否则的话,考虑关建边形成的子图,问题变为求删去尽可能少的边使图不连通,这是一个平面图最小割,套板即可。
K:恶臭题,维护最大,最小,次大,次小,一对,一对加最大,一对减最小,两对的答案,使用线段树维护即可。
L:大范围贪心,小范围背包即可。

浙公网安备 33010602011771号