[LeetCode] 970. Powerful Integers
Given three integers x
, y
, and bound
, return a list of all the powerful integers that have a value less than or equal to bound
.
An integer is powerful if it can be represented as xi + yj
for some integers i >= 0
and j >= 0
.
You may return the answer in any order. In your answer, each value should occur at most once.
Example 1:
Input: x = 2, y = 3, bound = 10 Output: [2,3,4,5,7,9,10] Explanation: 2 = 20 + 30 3 = 21 + 30 4 = 20 + 31 5 = 21 + 31 7 = 22 + 31 9 = 23 + 30 10 = 20 + 32
Example 2:
Input: x = 3, y = 5, bound = 15 Output: [2,4,6,8,10,14]
Constraints:
1 <= x, y <= 100
0 <= bound <= 106
强整数。
给定三个整数 x 、 y 和 bound ,返回 值小于或等于 bound 的所有 强整数 组成的列表 。
如果某一整数可以表示为 x^i + y^j ,其中整数 i >= 0 且 j >= 0,那么我们认为该整数是一个 强整数 。
你可以按 任何顺序 返回答案。在你的回答中,每个值 最多 出现一次。
来源:力扣(LeetCode)
链接:https://leetcode.cn/problems/powerful-integers
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
这道题不涉及任何数学定理,暴力解找答案即可。题意是让我们找出 x^m + y^n <= bound 所有的解,那么我们就从 1 开始,用 for 循环一直试探看看有多少解是 <= bound 的。注意因为 1 的任意次方都是 1,所以如果 x 或者 y 是 1 的话,只需要计算一次。
注意题目给的数据范围,因为 bound <= 10^6,这个范围介于 2^19 - 2^20 之间,所以常数次计算就能得到所有答案,所以时间空间复杂度是 O(1)。
时间O(1)
空间O(1)
Java实现
1 class Solution { 2 public List<Integer> powerfulIntegers(int x, int y, int bound) { 3 Set<Integer> set = new HashSet<>(); 4 for (int a = 1; a <= bound; a *= x) { 5 for (int b = 1; a + b <= bound; b *= y) { 6 set.add(a + b); 7 // 1的任意次方都是1,所以计算一次即可 8 if (y == 1) { 9 break; 10 } 11 } 12 if (x == 1) { 13 break; 14 } 15 } 16 return new ArrayList<>(set); 17 } 18 }