算法
- 状态表示:\(f(i, j)\)
集合:所有从 \((1, 1)\) 到 \((i, j)\) 的路线
属性:Min
- 状态计算:集合的划分
\(f(i, j)\) 根据只能向东走和向南走分为 \(f(i-1, j)\) 和 \(f(i, j-1)\)
需要进行特判是否为边界点
代码
#include <iostream>
using namespace std;
const int N = 110, INF = 1e9;
int n;
int w[N][N], f[N][N];
int main() {
cin >> n;
for (int i = 1; i <= n; ++i) {
for (int j = 1; j <= n; ++j) {
cin >> w[i][j];
}
}
for (int i = 1; i <= n; ++i) {
for (int j = 1; j <= n; ++j) {
if (i == 1 && j == 1) f[i][j] = w[i][j];
else {
f[i][j] = INF;
if (i > 1) f[i][j] = min(f[i][j], f[i - 1][j] + w[i][j]);
if (j > 1) f[i][j] = min(f[i][j], f[i][j - 1] + w[i][j]);
}
}
}
cout << f[n][n] << endl;
return 0;
}