BZOJ 2005 [Noi2010]能量採集 (容斥)

 [Noi2010]能量採集

Time Limit: 10 Sec  Memory Limit: 552 MB
Submit: 2324  Solved: 1387
[Submit][Status][Discuss]

Description

栋栋有一块长方形的地。他在地上种了一种能量植物,这样的植物能够採集太阳光的能量。在这些植物採集能量后,栋栋再使用一个能量汇集机器把这些植物採集到的能量汇集到一起。 栋栋的植物种得很整齐。一共同拥有n列,每列有m棵,植物的横竖间距都一样,因此对于每一棵植物。栋栋能够用一个坐标(x, y)来表示,当中x的范围是1至n,表示是在第x列,y的范围是1至m,表示是在第x列的第y棵。 因为能量汇集机器较大。不便移动,栋栋将它放在了一个角上,坐标正好是(0, 0)。 能量汇集机器在汇集的过程中有一定的能量损失。

假设一棵植物与能量汇集机器连接而成的线段上有k棵植物,则能量的损失为2k + 1。比如,当能量汇集机器收集坐标为(2, 4)的植物时。因为连接线段上存在一棵植物(1, 2),会产生3的能量损失。注意。假设一棵植物与能量汇集机器连接的线段上没有植物,则能量损失为1。如今要计算总的能量损失。 以下给出了一个能量採集的样例,当中n = 5,m = 4。一共同拥有20棵植物。在每棵植物上标明了能量汇集机器收集它的能量时产生的能量损失。 在这个样例中,总共产生了36的能量损失。

Input

仅包括一行,为两个整数n和m。

Output

仅包括一个整数。表示总共产生的能量损失。

Sample Input

【例子输入1】
5 4

【例子输入2】
3 4

Sample Output

【例子输出1】
36

【例子输出2】
20

【数据规模和约定】
对于10%的数据:1 ≤ n, m ≤ 10。

对于50%的数据:1 ≤ n, m ≤ 100。

对于80%的数据:1 ≤ n, m ≤ 1000;

对于90%的数据:1 ≤ n, m ≤ 10,000。

对于100%的数据:1 ≤ n, m ≤ 100,000。


题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=2005


题目分析:首先不难发现点(x,y)和(0,0)点之间的植物个数为gcd(x,y)-1。因此题目要求的实际上就是Σi(1-n)Σj(1-m) [2 * (gcd(i, j) - 1) - 1]。化简一下得 2 * Σi(1-n)Σj(1-m) gcd(i, j) - n * m,如今问题就是怎样高速求Σi(1-n)Σj(1-m) gcd(i, j)。能够用莫比乌斯反演搞,只是直接nlogn的容斥就能够了,cnt[i]记录的是最大公约数为i的二元组个数,首先(n / i) * (m / i)是全部以i为公约数的二元组个数  那么拿cnt[i]减去全部的cnt[j](j为i的倍数),剩下的就是全部以i为最大公约数的二元组个数。注意这里枚举约数时要倒序,由于我们要用小的减大的,要保证大的已经算出来了。然后依照公式计算就可以。注意要用long long


#include <cstdio>
#include <cstring>
#include <algorithm>
#define ll long long
using namespace std;
int const MAX = 1e5 + 5;
ll cnt[MAX];

int main()
{
    ll ans = 0;
    memset(cnt, 0, sizeof(cnt));
    ll n, m;
    scanf("%lld %lld", &n, &m);
    if(n < m)
        swap(n, m);
    for(int i = n; i >= 1; i--)
    {
        cnt[i] = (ll) (n / i) * (m / i);
        for(int j = i * 2; j <= n; j += i)
            cnt[i] -= cnt[j];
        ans += i * cnt[i];
    }
    printf("%lld\n", 2 * ans - n * m);
}



posted @ 2017-06-03 14:14  clnchanpin  阅读(...)  评论(...编辑  收藏