完整教程:大数据Spark(七十二):Transformation转换算子repartition和coalesce使用案例

文章目录

Transformation转换算子Repartition和Coalesce使用案例

一、Repartition使用案例

二、Coalesce使用案例


Transformation转换算子Repartition和Coalesce使用案例

一、Repartition使用案例

repartition可以对RDD进行重新分区,可以增加或减少分区,这个过程会产生shuffle,常用于对RDD进行增加分区,提高并行度场景。

注意:在底层,repartition(numPartitions) = coalesce(numPartitions,true)。

Java代码:

SparkConf conf = new SparkConf().setMaster("local").setAppName("repartitionTest");
JavaSparkContext sc = new JavaSparkContext(conf);
JavaRDD rdd1 = sc.parallelize(Arrays.asList(
        "love1", "love2", "love3", "love4",
        "love5", "love6", "love7", "love8",
        "love9", "love10", "love11", "love12"
), 3);
JavaRDD rdd2 = rdd1.mapPartitionsWithIndex(new Function2, Iterator>() {
    //index: 分区的索引,从0开始
    //iter: 分区中的元素
    @Override
    public Iterator call(Integer index, Iterator iter) throws Exception {
        ArrayList list = new ArrayList<>();
        while (iter.hasNext()) {
            String next = iter.next();
            list.add("rdd1 partition index: " + index + " current value: " + next);
        }
        return list.iterator();
    }
}, true);
//对rdd2 进行重新分区
//JavaRDD rdd3 = rdd2.repartition(4); //增加分区
JavaRDD rdd3 = rdd2.repartition(2);//减少分区
JavaRDD rdd4 = rdd3.mapPartitionsWithIndex(new Function2, Iterator>() {
    //index: 分区的索引,从0开始
    //iter: 分区中的元素
    @Override
    public Iterator call(Integer index, Iterator iter) throws Exception {
        ArrayList list = new ArrayList<>();
        while (iter.hasNext()) {
            String next = iter.next();
            list.add("rdd3 partition index: 【" + index + "】,current value: 【" + next + "】");
        }
        return list.iterator();
    }
}, true);
List result = rdd4.collect();
for (String s : result) {
    System.out.println(s);
}
sc.stop();

Scala代码:

val conf: SparkConf = new SparkConf().setMaster("local").setAppName("RepartitionTest")
val sc = new SparkContext(conf)
val rdd1: RDD[String] = sc.parallelize(List(
  "love1", "love2", "love3", "love4",
  "love5", "love6", "love7", "love8",
  "love9", "love10", "love11", "love12"
), 3)
val rdd2: RDD[String] = rdd1.mapPartitionsWithIndex((index, iter) => {
  val list = new ListBuffer[String]()
  while (iter.hasNext) {
    list.append(s"rdd1 partition index: $index ,current value: ${iter.next()}")
  }
  list.iterator
})
//对rdd2进行重分区
val rdd3: RDD[String] = rdd2.repartition(4) //增加分区
//val rdd3: RDD[String] = rdd2.repartition(2) //减少分区
val rdd4: RDD[String] = rdd3.mapPartitionsWithIndex((index, iter) => {
  val list = new ListBuffer[String]()
  while (iter.hasNext) {
    list.append(s"rdd3 partition index: 【$index】 ,current value: 【${iter.next()}】")
  }
  list.iterator
})
rdd4.collect.foreach(println)
sc.stop()

Java和Scala API结果如下,可见通过repartition进行增加或者减少分区操作会产生shuffle操作。

#repartition(4)结果
rdd3 partition index: 【0】,current value: 【rdd1 partition index: 0 current value: love4】
rdd3 partition index: 【0】,current value: 【rdd1 partition index: 1 current value: love8】
rdd3 partition index: 【0】,current value: 【rdd1 partition index: 2 current value: love9】
rdd3 partition index: 【1】,current value: 【rdd1 partition index: 0 current value: love1】
rdd3 partition index: 【1】,current value: 【rdd1 partition index: 1 current value: love5】
rdd3 partition index: 【1】,current value: 【rdd1 partition index: 2 current value: love10】
rdd3 partition index: 【2】,current value: 【rdd1 partition index: 0 current value: love2】
rdd3 partition index: 【2】,current value: 【rdd1 partition index: 1 current value: love6】
rdd3 partition index: 【2】,current value: 【rdd1 partition index: 2 current value: love11】
rdd3 partition index: 【3】,current value: 【rdd1 partition index: 0 current value: love3】
rdd3 partition index: 【3】,current value: 【rdd1 partition index: 1 current value: love7】
rdd3 partition index: 【3】,current value: 【rdd1 partition index: 2 current value: love12】
#repartition(2)结果
rdd3 partition index: 【0】,current value: 【rdd1 partition index: 0 current value: love2】
rdd3 partition index: 【0】,current value: 【rdd1 partition index: 0 current value: love4】
rdd3 partition index: 【0】,current value: 【rdd1 partition index: 1 current value: love6】
rdd3 partition index: 【0】,current value: 【rdd1 partition index: 1 current value: love8】
rdd3 partition index: 【0】,current value: 【rdd1 partition index: 2 current value: love9】
rdd3 partition index: 【0】,current value: 【rdd1 partition index: 2 current value: love11】
rdd3 partition index: 【1】,current value: 【rdd1 partition index: 0 current value: love1】
rdd3 partition index: 【1】,current value: 【rdd1 partition index: 0 current value: love3】
rdd3 partition index: 【1】,current value: 【rdd1 partition index: 1 current value: love5】
rdd3 partition index: 【1】,current value: 【rdd1 partition index: 1 current value: love7】
rdd3 partition index: 【1】,current value: 【rdd1 partition index: 2 current value: love10】
rdd3 partition index: 【1】,current value: 【rdd1 partition index: 2 current value: love12】

二、Coalesce使用案例

coalesce也可以对RDD分区增加或者减少,常用于减少RDD的分区数量,常用于提高小数据集的执行效率。与 repartition 不同,coalesce 默认情况下不会触发 Shuffle 操作,因此在减少分区时更加高效。函数签名如下:

def coalesce(numPartitions: Int, shuffle: Boolean = false): RDD[T]

其中,numPartitions 表示目标分区数,shuffle 参数指示是否进行 Shuffle,默认为 false。

特别注意:如果coalesce设置的分区数比原来的RDD的分区数还多的话,第二个参数设置为false不会起作用,如果设置成true,效果和repartition一样。即repartition(numPartitions) = coalesce(numPartitions,true)。

Java代码:

SparkConf conf = new SparkConf().setMaster("local").setAppName("CoalesceTest");
JavaSparkContext sc = new JavaSparkContext(conf);
JavaRDD rdd1 = sc.parallelize(Arrays.asList(
        "love1", "love2", "love3", "love4",
        "love5", "love6", "love7", "love8",
        "love9", "love10", "love11", "love12"
), 3);
JavaRDD rdd2 = rdd1.mapPartitionsWithIndex(new Function2, Iterator>() {
    //index: 分区的索引,从0开始
    //iter: 分区中的元素
    @Override
    public Iterator call(Integer index, Iterator iter) throws Exception {
        ArrayList list = new ArrayList<>();
        while (iter.hasNext()) {
            String next = iter.next();
            list.add("rdd1 partition index: " + index + " current value: " + next);
        }
        return list.iterator();
    }
}, true);
//coalesce对rdd2 进行重新分区,没有shuffle
//JavaRDD rdd3 = rdd2.coalesce(2);
//JavaRDD rdd3 = rdd2.coalesce(2,true);
JavaRDD rdd3 = rdd2.coalesce(4,false);
JavaRDD rdd4 = rdd3.mapPartitionsWithIndex(new Function2, Iterator>() {
    //index: 分区的索引,从0开始
    //iter: 分区中的元素
    @Override
    public Iterator call(Integer index, Iterator iter) throws Exception {
        ArrayList list = new ArrayList<>();
        while (iter.hasNext()) {
            String next = iter.next();
            list.add("rdd3 partition index: 【" + index + "】,current value: 【" + next + "】");
        }
        return list.iterator();
    }
}, true);
List result = rdd4.collect();
for (String s : result) {
    System.out.println(s);
}
sc.stop();

Scala代码:

val conf: SparkConf = new SparkConf().setMaster("local").setAppName("CoalesceTest")
val sc = new SparkContext(conf)
val rdd1: RDD[String] = sc.parallelize(List(
  "love1", "love2", "love3", "love4",
  "love5", "love6", "love7", "love8",
  "love9", "love10", "love11", "love12"
), 3)
val rdd2: RDD[String] = rdd1.mapPartitionsWithIndex((index, iter) => {
  val list = new ListBuffer[String]()
  while (iter.hasNext) {
    list.append(s"rdd1 partition index: $index ,current value: ${iter.next()}")
  }
  list.iterator
})
//coalesce对rdd2进行重分区,不产生shuffle
//val rdd3: RDD[String] = rdd2.coalesce(2)
//val rdd3: RDD[String] = rdd2.coalesce(2,true)
val rdd3: RDD[String] = rdd2.coalesce(4)
val rdd4: RDD[String] = rdd3.mapPartitionsWithIndex((index, iter) => {
  val list = new ListBuffer[String]()
  while (iter.hasNext) {
    list.append(s"rdd3 partition index: 【$index】 ,current value: 【${iter.next()}】")
  }
  list.iterator
})
rdd4.collect.foreach(println)
sc.stop()

Java和Scala API结果如下:

#coalesce(2)
rdd3 partition index: 【0】,current value: 【rdd1 partition index: 0 current value: love1】
rdd3 partition index: 【0】,current value: 【rdd1 partition index: 0 current value: love2】
rdd3 partition index: 【0】,current value: 【rdd1 partition index: 0 current value: love3】
rdd3 partition index: 【0】,current value: 【rdd1 partition index: 0 current value: love4】
rdd3 partition index: 【1】,current value: 【rdd1 partition index: 1 current value: love5】
rdd3 partition index: 【1】,current value: 【rdd1 partition index: 1 current value: love6】
rdd3 partition index: 【1】,current value: 【rdd1 partition index: 1 current value: love7】
rdd3 partition index: 【1】,current value: 【rdd1 partition index: 1 current value: love8】
rdd3 partition index: 【1】,current value: 【rdd1 partition index: 2 current value: love9】
rdd3 partition index: 【1】,current value: 【rdd1 partition index: 2 current value: love10】
rdd3 partition index: 【1】,current value: 【rdd1 partition index: 2 current value: love11】
rdd3 partition index: 【1】,current value: 【rdd1 partition index: 2 current value: love12】
#coalesce(2,true),等同于repartition(2)
rdd3 partition index: 【0】,current value: 【rdd1 partition index: 0 current value: love2】
rdd3 partition index: 【0】,current value: 【rdd1 partition index: 0 current value: love4】
rdd3 partition index: 【0】,current value: 【rdd1 partition index: 1 current value: love6】
rdd3 partition index: 【0】,current value: 【rdd1 partition index: 1 current value: love8】
rdd3 partition index: 【0】,current value: 【rdd1 partition index: 2 current value: love9】
rdd3 partition index: 【0】,current value: 【rdd1 partition index: 2 current value: love11】
rdd3 partition index: 【1】,current value: 【rdd1 partition index: 0 current value: love1】
rdd3 partition index: 【1】,current value: 【rdd1 partition index: 0 current value: love3】
rdd3 partition index: 【1】,current value: 【rdd1 partition index: 1 current value: love5】
rdd3 partition index: 【1】,current value: 【rdd1 partition index: 1 current value: love7】
rdd3 partition index: 【1】,current value: 【rdd1 partition index: 2 current value: love10】
rdd3 partition index: 【1】,current value: 【rdd1 partition index: 2 current value: love12】
#coalesce(4,false) 不起作用
rdd3 partition index: 【0】,current value: 【rdd1 partition index: 0 current value: love1】
rdd3 partition index: 【0】,current value: 【rdd1 partition index: 0 current value: love2】
rdd3 partition index: 【0】,current value: 【rdd1 partition index: 0 current value: love3】
rdd3 partition index: 【0】,current value: 【rdd1 partition index: 0 current value: love4】
rdd3 partition index: 【1】,current value: 【rdd1 partition index: 1 current value: love5】
rdd3 partition index: 【1】,current value: 【rdd1 partition index: 1 current value: love6】
rdd3 partition index: 【1】,current value: 【rdd1 partition index: 1 current value: love7】
rdd3 partition index: 【1】,current value: 【rdd1 partition index: 1 current value: love8】
rdd3 partition index: 【2】,current value: 【rdd1 partition index: 2 current value: love9】
rdd3 partition index: 【2】,current value: 【rdd1 partition index: 2 current value: love10】
rdd3 partition index: 【2】,current value: 【rdd1 partition index: 2 current value: love11】
rdd3 partition index: 【2】,current value: 【rdd1 partition index: 2 current value: love12】

  • 博客主页:https://lansonli.blog.csdn.net
  • 欢迎点赞 收藏 ⭐留言 如有错误敬请指正!
  • 本文由 Lansonli 原创,首发于 CSDN博客
  • 停下休息的时候不要忘了别人还在奔跑,希望大家抓紧时间学习,全力奔赴更美好的生活✨
posted @ 2026-01-28 20:01  clnchanpin  阅读(0)  评论(0)    收藏  举报