【02】Apache Flink 物化表与流批一体处理 - 详解

Apache Flink 物化表与流批一体处理

概述

物化表 (Materialized Tables) 是 Apache Flink 2.x 的核心特性之一,实现了真正的流批一体处理。本文档详细介绍物化表的概念、实现原理、使用方法和最佳实践。

物化表核心概念

什么是物化表

物化表是一种特殊的表,它将查询结果物理存储起来,并能够根据源数据的变化自动更新。在Flink中,物化表桥接了流处理和批处理,提供了统一的数据视图。

在这里插入图片描述

核心特性

1. 自动刷新

  • 基于时间的自动刷新 (FRESHNESS)
  • 基于数据变化的触发刷新
  • 手动刷新控制

2. 流批统一

  • 流式数据实时写入
  • 批量数据历史回填
  • 统一的查询接口

3. 存储优化

  • 支持多种存储格式 (Parquet, ORC, Iceberg)
  • 自动分区管理
  • 压缩和索引优化

️ 物化表语法详解

基础语法

-- 创建物化表的基本语法
CREATE MATERIALIZED TABLE [IF NOT EXISTS] table_name (
column_name data_type [COMMENT 'column_comment'],
...
[PRIMARY KEY (column_list) NOT ENFORCED]
) [COMMENT 'table_comment']
[PARTITIONED BY (partition_column, ...)]
[WITH (
'key1' = 'value1',
'key2' = 'value2',
...
)]
[FRESHNESS = INTERVAL 'time_interval' time_unit]
AS select_statement;

完整示例

-- 电商订单汇总物化表
CREATE MATERIALIZED TABLE order_summary (
product_id BIGINT COMMENT '商品ID',
order_date DATE COMMENT '订单日期',
total_orders BIGINT COMMENT '订单总数',
total_amount DECIMAL(15,2) COMMENT '总金额',
avg_amount DECIMAL(10,2) COMMENT '平均订单金额',
unique_customers BIGINT COMMENT '独立客户数',
PRIMARY KEY (product_id, order_date) NOT ENFORCED
) COMMENT '商品订单日汇总表'
PARTITIONED BY (order_date)
WITH (
'format' = 'parquet',
'compression' = 'snappy',
'partition.time-extractor.timestamp-pattern' = 'yyyy-MM-dd',
'sink.partition-commit.policy.kind' = 'metastore,success-file'
)
FRESHNESS = INTERVAL '1' HOUR
AS
SELECT
product_id,
DATE(order_time) as order_date,
COUNT(*) as total_orders,
SUM(amount) as total_amount,
AVG(amount) as avg_amount,
COUNT(DISTINCT customer_id) as unique_customers
FROM orders
WHERE order_time >= CURRENT_DATE - INTERVAL '30' DAY
GROUP BY product_id, DATE(order_time);

Flink 2.2 新特性

1. 可选的FRESHNESS子句

在Flink 2.2中,FRESHNESS子句不再是强制性的:

-- Flink 2.2: FRESHNESS是可选的
CREATE MATERIALIZED TABLE sales_summary (
region STRING,
total_sales DECIMAL(15,2),
PRIMARY KEY (region) NOT ENFORCED
) WITH (
'format' = 'parquet'
)
-- 不指定FRESHNESS,使用默认策略
AS SELECT
region,
SUM(amount) as total_sales
FROM sales_stream
GROUP BY region;

2. MaterializedTableEnricher接口

新的扩展点允许自定义默认行为:

public class SmartMaterializedTableEnricher implements MaterializedTableEnricher {
@Override
public CatalogMaterializedTable enrich(
ObjectIdentifier identifier,
CatalogMaterializedTable originalTable,
EnrichmentContext context) {
// 智能推断刷新频率
Duration inferredFreshness = inferFreshnessFromUpstream(
originalTable.getDefinitionQuery(),
context
);
// 优化存储配置
Map<String, String> optimizedOptions = optimizeStorageOptions(
  originalTable.getOptions(),
  context.getTableSize(),
  context.getQueryPatterns()
  );
  return CatalogMaterializedTable.newBuilder()
  .from(originalTable)
  .freshness(inferredFreshness)
  .options(optimizedOptions)
  .build();
  }
  private Duration inferFreshnessFromUpstream(String query, EnrichmentContext context) {
  // 分析上游表的更新频率
  // 根据数据量和查询模式推断最优刷新频率
  return Duration.ofMinutes(15); // 示例返回值
  }
  private Map<String, String> optimizeStorageOptions(
    Map<String, String> originalOptions,
      long tableSize,
      List<String> queryPatterns) {
        Map<String, String> optimized = new HashMap<>(originalOptions);
          // 根据表大小选择压缩算法
          if (tableSize > 1_000_000_000L) { // 1GB
          optimized.put("compression", "zstd");
          } else {
          optimized.put("compression", "snappy");
          }
          // 根据查询模式优化分区策略
          if (queryPatterns.stream().anyMatch(p -> p.contains("ORDER BY timestamp"))) {
          optimized.put("write.sort.order", "timestamp");
          }
          return optimized;
          }
          }

3. 增强的Delta Join支持

-- Delta Join现在支持更多SQL模式
CREATE MATERIALIZED TABLE enriched_orders (
order_id BIGINT,
customer_id BIGINT,
customer_name STRING,
customer_tier STRING,
product_id BIGINT,
product_name STRING,
amount DECIMAL(10,2),
order_time TIMESTAMP(3),
PRIMARY KEY (order_id) NOT ENFORCED
) WITH (
'format' = 'iceberg',
'write.upsert.enabled' = 'true'
)
FRESHNESS = INTERVAL '5' MINUTE
AS
SELECT
o.order_id,
o.customer_id,
c.name as customer_name,
c.tier as customer_tier,
o.product_id,
p.name as product_name,
o.amount,
o.order_time
FROM orders o
LEFT JOIN customers FOR SYSTEM_TIME AS OF o.order_time AS c
ON o.customer_id = c.id
LEFT JOIN products FOR SYSTEM_TIME AS OF o.order_time AS p
ON o.product_id = p.id
WHERE o.amount > 0;

实际应用场景

1. 实时数据仓库

-- 构建实时数据仓库的分层架构
-- ODS层:原始数据
CREATE TABLE ods_user_behavior (
user_id BIGINT,
item_id BIGINT,
behavior_type STRING,
timestamp_ms BIGINT,
event_time AS TO_TIMESTAMP_LTZ(timestamp_ms, 3),
WATERMARK FOR event_time AS event_time - INTERVAL '5' SECOND
) WITH (
'connector' = 'kafka',
'topic' = 'user_behavior'
);
-- DWD层:明细数据物化表
CREATE MATERIALIZED TABLE dwd_user_behavior_detail (
user_id BIGINT,
item_id BIGINT,
behavior_type STRING,
event_date DATE,
event_hour INT,
event_time TIMESTAMP(3),
PRIMARY KEY (user_id, item_id, event_time) NOT ENFORCED
) PARTITIONED BY (event_date, event_hour)
WITH (
'format' = 'parquet',
'compression' = 'snappy'
)
FRESHNESS = INTERVAL '10' MINUTE
AS
SELECT
user_id,
item_id,
behavior_type,
DATE(event_time) as event_date,
HOUR(event_time) as event_hour,
event_time
FROM ods_user_behavior;
-- DWS层:汇总数据物化表
CREATE MATERIALIZED TABLE dws_user_behavior_summary (
user_id BIGINT,
event_date DATE,
pv_count BIGINT,
buy_count BIGINT,
cart_count BIGINT,
fav_count BIGINT,
active_hours ARRAY<INT>,
  PRIMARY KEY (user_id, event_date) NOT ENFORCED
  ) PARTITIONED BY (event_date)
  WITH (
  'format' = 'parquet',
  'write.merge.enabled' = 'true'
  )
  FRESHNESS = INTERVAL '30' MINUTE
  AS
  SELECT
  user_id,
  event_date,
  SUM(CASE WHEN behavior_type = 'pv' THEN 1 ELSE 0 END) as pv_count,
  SUM(CASE WHEN behavior_type = 'buy' THEN 1 ELSE 0 END) as buy_count,
  SUM(CASE WHEN behavior_type = 'cart' THEN 1 ELSE 0 END) as cart_count,
  SUM(CASE WHEN behavior_type = 'fav' THEN 1 ELSE 0 END) as fav_count,
  COLLECT(DISTINCT event_hour) as active_hours
  FROM dwd_user_behavior_detail
  GROUP BY user_id, event_date;
  -- ADS层:应用数据物化表
  CREATE MATERIALIZED TABLE ads_user_profile (
  user_id BIGINT,
  total_pv BIGINT,
  total_buy BIGINT,
  avg_daily_pv DOUBLE,
  preferred_hours ARRAY<INT>,
    user_level STRING,
    last_active_date DATE,
    PRIMARY KEY (user_id) NOT ENFORCED
    ) WITH (
    'format' = 'iceberg',
    'write.upsert.enabled' = 'true'
    )
    FRESHNESS = INTERVAL '1' HOUR
    AS
    SELECT
    user_id,
    SUM(pv_count) as total_pv,
    SUM(buy_count) as total_buy,
    AVG(pv_count) as avg_daily_pv,
    ARRAY_AGG(DISTINCT active_hour) as preferred_hours,
    CASE
    WHEN SUM(buy_count) >= 10 THEN 'VIP'
    WHEN SUM(buy_count) >= 3 THEN 'REGULAR'
    ELSE 'NEW'
    END as user_level,
    MAX(event_date) as last_active_date
    FROM (
    SELECT
    user_id,
    event_date,
    pv_count,
    buy_count,
    EXPLODE(active_hours) as active_hour
    FROM dws_user_behavior_summary
    WHERE event_date >= CURRENT_DATE - INTERVAL '30' DAY
    ) t
    GROUP BY user_id;

2. 实时OLAP分析

-- 实时销售分析物化表
CREATE MATERIALIZED TABLE sales_analysis (
region STRING,
product_category STRING,
time_window TIMESTAMP(3),
sales_amount DECIMAL(15,2),
order_count BIGINT,
unique_customers BIGINT,
avg_order_value DECIMAL(10,2),
growth_rate DOUBLE,
PRIMARY KEY (region, product_category, time_window) NOT ENFORCED
) PARTITIONED BY (region)
WITH (
'format' = 'parquet',
'compression' = 'zstd',
'write.merge.enabled' = 'true'
)
FRESHNESS = INTERVAL '5' MINUTE
AS
SELECT
region,
product_category,
TUMBLE_START(order_time, INTERVAL '1' HOUR) as time_window,
SUM(amount) as sales_amount,
COUNT(*) as order_count,
COUNT(DISTINCT customer_id) as unique_customers,
AVG(amount) as avg_order_value,
-- 计算同比增长率
(SUM(amount) - LAG(SUM(amount), 24) OVER (
PARTITION BY region, product_category
ORDER BY TUMBLE_START(order_time, INTERVAL '1' HOUR)
)) / LAG(SUM(amount), 24) OVER (
PARTITION BY region, product_category
ORDER BY TUMBLE_START(order_time, INTERVAL '1' HOUR)
) * 100 as growth_rate
FROM orders
GROUP BY
region,
product_category,
TUMBLE(order_time, INTERVAL '1' HOUR);
-- 基于物化表的交互式查询
SELECT
region,
product_category,
AVG(sales_amount) as avg_hourly_sales,
MAX(growth_rate) as max_growth_rate,
COUNT(*) as data_points
FROM sales_analysis
WHERE time_window >= CURRENT_TIMESTAMP - INTERVAL '7' DAY
GROUP BY region, product_category
ORDER BY avg_hourly_sales DESC;

3. 实时特征工程

-- 用户特征物化表
CREATE MATERIALIZED TABLE user_features (
user_id BIGINT,
feature_timestamp TIMESTAMP(3),
-- 基础特征
age_group STRING,
gender STRING,
city STRING,
-- 行为特征
last_7d_pv BIGINT,
last_7d_buy BIGINT,
last_7d_amount DECIMAL(10,2),
-- 偏好特征
preferred_categories ARRAY<STRING>,
  preferred_brands ARRAY<STRING>,
    -- 时间特征
    active_hours ARRAY<INT>,
      active_days ARRAY<STRING>,
        -- 统计特征
        avg_order_value DECIMAL(10,2),
        purchase_frequency DOUBLE,
        -- 实时特征
        last_active_time TIMESTAMP(3),
        current_session_pv INT,
        PRIMARY KEY (user_id) NOT ENFORCED
        ) WITH (
        'format' = 'iceberg',
        'write.upsert.enabled' = 'true',
        'read.streaming.enabled' = 'true'
        )
        FRESHNESS = INTERVAL '10' MINUTE
        AS
        SELECT
        u.user_id,
        CURRENT_TIMESTAMP as feature_timestamp,
        -- 基础信息
        u.age_group,
        u.gender,
        u.city,
        -- 最近7天行为统计
        COALESCE(b7d.pv_count, 0) as last_7d_pv,
        COALESCE(b7d.buy_count, 0) as last_7d_buy,
        COALESCE(b7d.total_amount, 0) as last_7d_amount,
        -- 偏好分析
        COALESCE(pref.categories, ARRAY[]) as preferred_categories,
        COALESCE(pref.brands, ARRAY[]) as preferred_brands,
        -- 时间模式
        COALESCE(time_pattern.hours, ARRAY[]) as active_hours,
        COALESCE(time_pattern.days, ARRAY[]) as active_days,
        -- 统计特征
        COALESCE(stats.avg_order_value, 0) as avg_order_value,
        COALESCE(stats.purchase_frequency, 0) as purchase_frequency,
        -- 实时状态
        COALESCE(realtime.last_active_time, TIMESTAMP '1970-01-01 00:00:00') as last_active_time,
        COALESCE(realtime.session_pv, 0) as current_session_pv
        FROM users u
        LEFT JOIN (
        -- 最近7天行为汇总
        SELECT
        user_id,
        COUNT(CASE WHEN behavior_type = 'pv' THEN 1 END) as pv_count,
        COUNT(CASE WHEN behavior_type = 'buy' THEN 1 END) as buy_count,
        SUM(CASE WHEN behavior_type = 'buy' THEN amount ELSE 0 END) as total_amount
        FROM user_behavior
        WHERE event_time >= CURRENT_TIMESTAMP - INTERVAL '7' DAY
        GROUP BY user_id
        ) b7d ON u.user_id = b7d.user_id
        LEFT JOIN (
        -- 偏好分析
        SELECT
        user_id,
        COLLECT(category) as categories,
        COLLECT(brand) as brands
        FROM (
        SELECT
        ub.user_id,
        p.category,
        p.brand,
        ROW_NUMBER() OVER (PARTITION BY ub.user_id, p.category ORDER BY COUNT(*) DESC) as rn1,
        ROW_NUMBER() OVER (PARTITION BY ub.user_id, p.brand ORDER BY COUNT(*) DESC) as rn2
        FROM user_behavior ub
        JOIN products p ON ub.item_id = p.id
        WHERE ub.behavior_type = 'buy'
        AND ub.event_time >= CURRENT_TIMESTAMP - INTERVAL '30' DAY
        GROUP BY ub.user_id, p.category, p.brand
        ) ranked
        WHERE rn1 <= 3 OR rn2 <= 3
        GROUP BY user_id
        ) pref ON u.user_id = pref.user_id
        LEFT JOIN (
        -- 时间模式分析
        SELECT
        user_id,
        COLLECT(DISTINCT HOUR(event_time)) as hours,
        COLLECT(DISTINCT DAYNAME(event_time)) as days
        FROM user_behavior
        WHERE event_time >= CURRENT_TIMESTAMP - INTERVAL '30' DAY
        GROUP BY user_id
        ) time_pattern ON u.user_id = time_pattern.user_id
        LEFT JOIN (
        -- 统计特征
        SELECT
        user_id,
        AVG(amount) as avg_order_value,
        COUNT(*) / 30.0 as purchase_frequency
        FROM user_behavior
        WHERE behavior_type = 'buy'
        AND event_time >= CURRENT_TIMESTAMP - INTERVAL '30' DAY
        GROUP BY user_id
        ) stats ON u.user_id = stats.user_id
        LEFT JOIN (
        -- 实时状态
        SELECT
        user_id,
        MAX(event_time) as last_active_time,
        COUNT(CASE WHEN event_time >= CURRENT_TIMESTAMP - INTERVAL '30' MINUTE
        AND behavior_type = 'pv' THEN 1 END) as session_pv
        FROM user_behavior
        WHERE event_time >= CURRENT_TIMESTAMP - INTERVAL '1' HOUR
        GROUP BY user_id
        ) realtime ON u.user_id = realtime.user_id;

物化表管理

1. 手动刷新

-- 手动刷新物化表
ALTER MATERIALIZED TABLE sales_summary REFRESH;
-- 刷新特定分区
ALTER MATERIALIZED TABLE sales_summary REFRESH PARTITION (region = 'US', date = '2025-01-01');

2. 暂停和恢复

-- 暂停物化表自动刷新
ALTER MATERIALIZED TABLE sales_summary SUSPEND;
-- 恢复物化表自动刷新
ALTER MATERIALIZED TABLE sales_summary RESUME;

3. 修改刷新频率

-- 修改刷新频率
ALTER MATERIALIZED TABLE sales_summary SET FRESHNESS = INTERVAL '30' MINUTE;

4. 查看物化表状态

-- 查看物化表信息
DESCRIBE MATERIALIZED TABLE sales_summary;
-- 查看刷新历史
SELECT * FROM INFORMATION_SCHEMA.MATERIALIZED_TABLE_REFRESHES
WHERE table_name = 'sales_summary'
ORDER BY refresh_time DESC
LIMIT 10;

性能优化

1. 分区策略

-- 时间分区优化
CREATE MATERIALIZED TABLE time_partitioned_sales (
product_id BIGINT,
sales_date DATE,
sales_amount DECIMAL(15,2),
PRIMARY KEY (product_id, sales_date) NOT ENFORCED
) PARTITIONED BY (sales_date)
WITH (
'partition.time-extractor.timestamp-pattern' = 'yyyy-MM-dd',
'sink.partition-commit.delay' = '1h',
'sink.partition-commit.policy.kind' = 'metastore,success-file'
)
FRESHNESS = INTERVAL '1' HOUR
AS SELECT ...;
-- 多级分区
CREATE MATERIALIZED TABLE multi_partitioned_data (
region STRING,
category STRING,
event_date DATE,
event_hour INT,
metrics DECIMAL(15,2),
PRIMARY KEY (region, category, event_date, event_hour) NOT ENFORCED
) PARTITIONED BY (region, event_date, event_hour)
WITH (
'partition.time-extractor.timestamp-pattern' = 'yyyy-MM-dd HH',
'sink.partition-commit.policy.kind' = 'metastore'
)
AS SELECT ...;

2. 存储格式优化

-- 使用Iceberg格式进行优化
CREATE MATERIALIZED TABLE iceberg_optimized (
id BIGINT,
data STRING,
timestamp_col TIMESTAMP(3),
PRIMARY KEY (id) NOT ENFORCED
) WITH (
'connector' = 'iceberg',
'catalog-name' = 'hadoop_catalog',
'warehouse' = 's3://my-bucket/warehouse',
'format-version' = '2',
'write.upsert.enabled' = 'true',
'write.merge.mode' = 'copy-on-write',
'write.target-file-size-bytes' = '134217728' -- 128MB
)
AS SELECT ...;

3. 增量更新优化

-- 配置增量更新
CREATE MATERIALIZED TABLE incremental_summary (
key_col STRING,
sum_value BIGINT,
count_value BIGINT,
PRIMARY KEY (key_col) NOT ENFORCED
) WITH (
'format' = 'parquet',
'write.merge.enabled' = 'true',
'changelog.mode' = 'upsert'
)
FRESHNESS = INTERVAL '5' MINUTE
AS
SELECT
key_col,
SUM(value) as sum_value,
COUNT(*) as count_value
FROM source_table
WHERE update_time >= CURRENT_TIMESTAMP - INTERVAL '1' HOUR
GROUP BY key_col;

最佳实践

1. 设计原则

选择合适的刷新频率:

-- 根据业务需求选择刷新频率
-- 实时报表: 1-5分钟
FRESHNESS = INTERVAL '5' MINUTE
-- 小时级分析: 10-30分钟  
FRESHNESS = INTERVAL '15' MINUTE
-- 日级报表: 1-6小时
FRESHNESS = INTERVAL '1' HOUR

合理的分区设计:

-- 基于查询模式设计分区
-- 时间范围查询 -> 时间分区
PARTITIONED BY (event_date)
-- 地域分析 -> 地域分区
PARTITIONED BY (region)
-- 多维分析 -> 多级分区
PARTITIONED BY (region, event_date)

2. 监控和告警

-- 创建监控视图
CREATE VIEW materialized_table_health AS
SELECT
table_name,
last_refresh_time,
refresh_status,
CURRENT_TIMESTAMP - last_refresh_time as staleness,
CASE
WHEN refresh_status = 'FAILED' THEN 'CRITICAL'
WHEN CURRENT_TIMESTAMP - last_refresh_time > INTERVAL '1' HOUR THEN 'WARNING'
ELSE 'HEALTHY'
END as health_status
FROM INFORMATION_SCHEMA.MATERIALIZED_TABLE_REFRESHES;

3. 成本优化

-- 使用压缩减少存储成本
WITH (
'format' = 'parquet',
'compression' = 'zstd',  -- 高压缩比
'parquet.block.size' = '268435456'  -- 256MB块大小
)
-- 设置数据保留策略
WITH (
'sink.partition-commit.policy.kind' = 'metastore,success-file',
'partition.expiration-time' = '30d'  -- 30天后自动删除
)

Flink物化表与传统物化视图对比

其实物化表听着会不会想起doris的物化视图

与Doris物化视图的比较

特性Flink物化表Doris物化视图
定位流批一体的数据表结构OLAP分析加速
更新方式基于FRESHNESS的自动刷新基于触发器或手动刷新
数据模型支持流式和批量更新主要面向批量更新
查询能力支持实时和批处理查询优化OLAP查询
存储引擎可插拔存储格式(Iceberg、Parquet等)内置存储引擎
生态集成与Flink生态无缝集成与Doris生态集成

架构差异

在这里插入图片描述
在这里插入图片描述

适用场景对比

Flink物化表更适合:

  • 实时数据仓库建设
  • 流批一体处理场景
  • 复杂事件处理(CEP)
  • 机器学习特征工程
  • 多引擎计算环境(Spark、Presto等)

Doris物化视图更适合:

  • 传统OLAP分析场景
  • 高性能即席查询
  • 报表和BI系统
  • 交互式数据分析
  • 单一OLAP引擎环境

混合架构最佳实践

-- 1. 使用Flink构建实时数据仓库
-- 创建实时数据层
CREATE MATERIALIZED TABLE real_time_orders (
order_id BIGINT,
customer_id BIGINT,
product_id BIGINT,
amount DECIMAL(10,2),
order_time TIMESTAMP(3),
PRIMARY KEY (order_id) NOT ENFORCED
) WITH (
'connector' = 'iceberg',
'write.upsert.enabled' = 'true'
)
FRESHNESS = INTERVAL '1' MINUTE
AS SELECT * FROM kafka_orders;
-- 2. 将Flink物化表数据同步到Doris
CREATE TABLE doris_orders (
order_id BIGINT,
customer_id BIGINT,
product_id BIGINT,
amount DECIMAL(10,2),
order_time DATETIME
) UNIQUE KEY(order_id)
DISTRIBUTED BY HASH(order_id) BUCKETS 10;
-- 3. 在Doris中创建高性能物化视图用于BI分析
CREATE MATERIALIZED VIEW orders_daily_summary AS
SELECT
DATE(order_time) as order_date,
product_id,
COUNT(*) as order_count,
SUM(amount) as total_amount,
AVG(amount) as avg_amount
FROM doris_orders
GROUP BY DATE(order_time), product_id;

技术优势总结

Flink物化表的核心优势:

  1. 真正的流批一体: 统一API处理流数据和批数据
  2. 强大的计算能力: 支持复杂事件处理和状态计算
  3. 灵活的存储选择: 可选多种存储格式,适应不同场景
  4. 完善的时间语义: 支持事件时间和处理时间
  5. 生态丰富: 与大数据生态无缝集成

Doris物化视图的核心优势:

  1. 极致的查询性能: 针对OLAP场景深度优化
  2. 简单易用: 统一的SQL接口,降低使用门槛
  3. 高并发能力: MPP架构支持高并发查询
  4. 运维友好: 自成体系,运维复杂度低
  5. BI集成良好: 与主流BI工具深度集成

总结: 物化表是Flink实现流批一体的核心技术,通过合理的设计和配置,可以构建高效的实时数据仓库和分析系统,为企业提供统一的数据视图和查询能力。与Doris物化视图相比,Flink物化表更适合实时流处理场景,而Doris物化视图则更专注于高性能OLAP分析,两者可以结合使用,构建更完整的数据解决方案。
在这里插入图片描述

posted @ 2026-01-15 12:11  clnchanpin  阅读(29)  评论(0)    收藏  举报