Shader "CLF/SetLightting"
{
Properties
{
_MainColor("MainColor", Color) = (0,0,0,1) //模型主颜色
_InSideRimColor("InSideRimColor", Color) = (1,1,1,1)//内边缘光颜色
_InSideRimPower("InSideRimPower", Range(0.0,5)) = 0 //边缘光强度 ,这个值可以控制菲涅尔影响范围的大小,这个值越大,效果上越边缘化
_InSideRimIntensity("InSideRimIntensity", Range(0.0, 10)) = 0 //边缘光强度系数 这个值是反射的强度, 值越大,返回的强度越大,导致边缘的颜色不那么明显
_OutSideRimColor("OutSideRimColor", Color) = (1,1,1,1)//外边缘光颜色
_OutSideRimSize("OutSideRimSize", Float) = 0 //因为外边缘光,需要把模型外扩,这是外扩大小
_OutSideRimPower("OutSideRimPower", Range(0.0,5)) = 0 //边缘光强度 ,这个值可以控制菲涅尔影响范围的大小,这个值越大,效果上越边缘化
_OutSideRimIntensity("OutSideRimIntensity", Range(0.0, 10)) = 0 //边缘光强度系数 这个值是反射的强度, 值越大,返回的强度越大,导致边缘的颜色不那么明显
}
SubShader
{
Tags { "RenderType" = "Opaque" }
LOD 100
Pass //内边缘光pass
{
CGPROGRAM
#pragma vertex vert
#pragma fragment frag
#include "UnityCG.cginc"
#include "Lighting.cginc"
uniform float4 _MainColor;
uniform float4 _InSideRimColor;
uniform float _InSideRimPower;
uniform float _InSideRimIntensity;
struct appdata
{
float4 vertex : POSITION;
float2 uv : TEXCOORD0;
float3 normal : NORMAL;
float4 tangent : TANGENT;
};
struct v2f
{
float2 uv : TEXCOORD0;
float3 normal : TEXCOORD1;
float4 vertex : SV_POSITION;
float4 vertexWorld : TEXCOORD2;
};
v2f vert(appdata v)
{
v2f o;
o.normal = mul(unity_ObjectToWorld, float4(v.normal,0)).xyz;
o.vertex = UnityObjectToClipPos(v.vertex);
o.vertexWorld = mul(unity_ObjectToWorld, v.vertex);
o.uv = v.uv;
return o;
}
fixed4 frag(v2f i) : SV_Target
{
i.normal = normalize(i.normal);//下面计算方式套用菲涅尔计算
float3 worldViewDir = normalize(_WorldSpaceCameraPos.xyz - i.vertexWorld.xyz);//获取单位视角方向 相机世界空间位置减去顶点世界空间位置
half NdotV = max(0, dot(i.normal, worldViewDir));//计算法线方向和视角方向点积,约靠近边缘夹角越大,值约小,那就是会越在圆球中间约亮,越边缘约暗
NdotV = 1.0 - NdotV;//这里需求是越边缘约亮,所以需要反一下,这里用1 减下
float fresnel = pow(NdotV,_InSideRimPower) * _InSideRimIntensity;//使用上面的属性参数,这里不多说
float3 Emissive = _InSideRimColor.rgb * fresnel; //配置上属性里面的内边缘光颜色
return _MainColor + float4(Emissive,1);//最后加在本体主颜色就即可
}
ENDCG
}
Pass //外边缘光pass
{
Cull Front //需要正面剔除,否则模型主pass渲染会看不到
Blend SrcAlpha One // 需要设置成透明叠加
CGPROGRAM
#pragma vertex vert
#pragma fragment frag
#include "UnityCG.cginc"
#include "Lighting.cginc"
uniform float4 _OutSideRimColor;
uniform float _OutSideRimSize;
uniform float _OutSideRimPower;
uniform float _OutSideRimIntensity;
struct appdata
{
float4 vertex : POSITION;
float2 uv : TEXCOORD0;
float3 normal : NORMAL;
float4 tangent : TANGENT;
};
struct v2f
{
float2 uv : TEXCOORD0;
float3 normal : TEXCOORD1;
float4 vertex : SV_POSITION;
float4 vertexWorld : TEXCOORD2;
};
v2f vert(appdata v)
{
v2f o;
o.normal = mul(unity_ObjectToWorld, float4(v.normal,0)).xyz;
v.vertex.xyz += v.normal * _OutSideRimSize; //顶点进行外扩
o.vertex = UnityObjectToClipPos(v.vertex);
o.vertexWorld = mul(unity_ObjectToWorld, v.vertex);
o.uv = v.uv;
return o;
}
fixed4 frag(v2f i) : SV_Target
{
i.normal = normalize(i.normal);//**下面计算方式套用菲涅尔计算区别在下面2点**
//float3 worldViewDir = normalize(_WorldSpaceCameraPos.xyz - i.vertexWorld.xyz);
float3 worldViewDir = normalize(i.vertexWorld.xyz - _WorldSpaceCameraPos.xyz);//**区别1**:因为顶点外扩,法线不变, 这里需要反过来,顶点世界空间位置减去相机世界空间位置
half NdotV = dot(i.normal, worldViewDir);
//NdotV = 1.0-NdotV;//**区别2**:因为需求是发光内强外弱,在模型外扩之后,这里就不需要反了
float fresnel = pow(saturate(NdotV),_OutSideRimPower) * _OutSideRimIntensity;//配置上属性里面的外边缘光颜色
return float4(_OutSideRimColor.rgb,fresnel);//这里最终计算的值,只需要用来处理返回颜色的Alpha透明度
}
ENDCG
}
}
}