【1.56.1】import
1、import 的使用
#模块可以包含可执行的语句和函数的定义,这些语句的目的是初始化模块,
它们只在模块名第一次遇到导入import语句时才执行
(import语句是可以在程序中的任意位置使用的,且针对同一个模块很import多次,
为了防止你重复导入,python的优化手段是:第一次导入后就将模块名加载到内存了,
后续的import语句仅是对已经加载到内存中的模块对象增加了一次引用,
不会重新执行模块内的语句),
如下
import spam
#只在第一次导入时才执行spam.py内代码
,此处的显式效果是只打印一次'from the spam.py',
当然其他的顶级代码也都被执行了,只不过没有显示效果.
代码示例:
'''
import tbjx
import tbjx
import tbjx
import tbjx
import tbjx
'''
'''
执行结果:只是打印一次:
from the tbjx.py
'''
2、 import tbjx 后完成 以下三件事
#1.为源文件(tbjx模块)创建新的名称空间,在tbjx中定义的函数和方法若是使用到了global时访问的就是这个名称空间。
#2.在新创建的命名空间中执行模块中包含的代码,见初始导入import tbjx
提示:导入模块时到底执行了什么?
In fact function definitions are also ‘statements’ that are
‘executed’; the execution of a module-level function definition
enters the function name in the module’s global symbol table.
事实上函数定义也是“被执行”的语句,模块级别函数定义的执行将函数名放
入模块全局名称空间表,用globals()可以查看
#3.创建名字tbjx来引用该命名空间
这个名字和变量名没什么区别,都是‘第一类的’,且使用tbjx.名字的方式
可以访问tbjx.py文件中定义的名字,tbjx.名字与test.py中的名字来自
两个完全不同的地方。
3、为 模块 去别名 as
1、可以将过长的模块命名改成短的,便于操作。
2、有利于代码的拓展,优化。
#mysql.py
def sqlparse():
print('from mysql sqlparse')
#oracle.py
def sqlparse():
print('from oracle sqlparse')
#test.py
db_type=input('>>: ')
if db_type == 'mysql':
import mysql as db
elif db_type == 'oracle':
import oracle as db
db.sqlparse()
4、导入多个模块
import sys,os,json # 可以这样写,但是不推荐 #推荐应该这样: import sys import os import json
5、from ... import ...
#唯一的区别就是:使用from...import...则是将spam中的名字直接导入到当前的名称空间中,
所以在当前名称空间中,直接使用名字就可以了、无需加前缀:tbjx. #from...import...的方式有好处也有坏处 好处:使用起来方便了 坏处:容易与当前执行文件中的名字冲突
5.1 支持 as 也可以导入多个
from tbjx import read1 as read read()
from tbjx import read1,read2,name
5.2 from import *
#from spam import * 把spam中所有的不是以下划线(_)开头的名字都导入到当前位置 #大部分情况下我们的python程序不应该使用这种导入方式,因为*你不知道你导入什么名字,
很有可能会覆盖掉你之前已经定义的名字。而且可读性极其的差,在交互式环境中导入时没有问题。
5.3 可以使用__all__来控制*(用来发布新版本)
__all__=['money','read1'] #这样在另外一个文件中用from spam import *就这能导入列表中规定的两个名字
5.4 模块循环/嵌套导入
模块循环/嵌套导入抛出异常的根本原因是由于在python中模块被导入一次之后,
就不会重新导入,只会在第一次导入时执行模块内代码
在我们的项目中应该尽量避免出现循环/嵌套导入,
如果出现多个模块都需要共享的数据,可以将共享的数据集中存放到某一个地方
6. if __name__ =="__main__"
#编写好的一个python文件可以有两种用途: 一:脚本,一个文件就是整个程序,用来被执行 二:模块,文件中存放着一堆功能,用来被导入使用 #python为我们内置了全局变量__name__, 当文件被当做脚本执行时:__name__ 等于'__main__' 当文件被当做模块导入时:__name__等于模块名 #作用:用来控制.py文件在不同的应用场景下执行不同的逻辑(或者是在模块文件中测试代码) if __name__ == '__main__':
7、模块 搜索 路径
模块的查找顺序是:内存中已经加载的模块->内置模块->sys.path路径中包含的模块
3.6 模块循环导入问题
模块循环/嵌套导入抛出异常的根本原因是由于在python中模块被导入一次之后,就不会重新导入,只会在第一次导入时执行模块内代码
在我们的项目中应该尽量避免出现循环/嵌套导入,如果出现多个模块都需要共享的数据,可以将共享的数据集中存放到某一个地方
在程序出现了循环/嵌套导入后的异常分析、解决方法如下(了解,以后尽量避免)
View Code四,模块的重载(了解)
考虑到性能的原因,每个模块只被导入一次,放入字典sys.module中,如果你改变了模块的内容,你必须重启程序,python不支持重新加载或卸载之前导入的模块,
有的同学可能会想到直接从sys.module中删除一个模块不就可以卸载了吗,注意了,你删了sys.module中的模块对象仍然可能被其他程序的组件所引用,因而不会被清楚。
特别的对于我们引用了这个模块中的一个类,用这个类产生了很多对象,因而这些对象都有关于这个模块的引用。
如果只是你想交互测试的一个模块,使用 importlib.reload(), e.g. import importlib; importlib.reload(modulename),这只能用于测试环境。
aa.py初始内容
执行test文件在20秒的等待时间里,修改aa.py中func1的内容,等待test.py的结果。
打开importlib注释,重新测试
六,模块的搜索路径
模块的查找顺序是:内存中已经加载的模块->内置模块->sys.path路径中包含的模块
View Code七,编译Python文件(了解)
为了提高加载模块的速度,强调强调强调:提高的是加载速度而绝非运行速度。python解释器会在__pycache__目录中下缓存每个模块编译后的版本,格式为:module.version.pyc。通常会包含python的版本号。例如,在CPython3.3版本下,spam.py模块会被缓存成__pycache__/spam.cpython-33.pyc。这种命名规范保证了编译后的结果多版本共存。
Python检查源文件的修改时间与编译的版本进行对比,如果过期就需要重新编译。这是完全自动的过程。并且编译的模块是平台独立的,所以相同的库可以在不同的架构的系统之间共享,即pyc使一种跨平台的字节码,类似于JAVA火.NET,是由python虚拟机来执行的,但是pyc的内容跟python的版本相关,不同的版本编译后的pyc文件不同,2.5编译的pyc文件不能到3.5上执行,并且pyc文件是可以反编译的,因而它的出现仅仅是用来提升模块的加载速度的,不是用来加密的。
详细说明八,包
8.1 什么是包?
#官网解释 Packages are a way of structuring Python’s module namespace by using “dotted module names” 包是一种通过使用‘.模块名’来组织python模块名称空间的方式。 #具体的:包就是一个包含有__init__.py文件的文件夹,所以其实我们创建包的目的就是为了用文件夹将文件/模块组织起来 #需要强调的是: 1. 在python3中,即使包下没有__init__.py文件,import 包仍然不会报错,而在python2中,包下一定要有该文件,否则import 包报错 2. 创建包的目的不是为了运行,而是被导入使用,记住,包只是模块的一种形式而已,包的本质就是一种模块
8.2 为何要使用包
包的本质就是一个文件夹,那么文件夹唯一的功能就是将文件组织起来 随着功能越写越多,我们无法将所以功能都放到一个文件中,于是我们使用模块去组织功能,而随着模块越来越多,我们就需要用文件夹将模块文件组织起来,以此来提高程序的结构性和可维护性
8.3 注意事项
#1.关于包相关的导入语句也分为import和from ... import ...两种,但是无论哪种,无论在什么位置,在导入时都必须遵循一个原则:凡是在导入时带点的,点的左边都必须是一个包,否则非法。可以带有一连串的点,如item.subitem.subsubitem,但都必须遵循这个原则。但对于导入后,在使用时就没有这种限制了,点的左边可以是包,模块,函数,类(它们都可以用点的方式调用自己的属性)。 #2、import导入文件时,产生名称空间中的名字来源于文件,import 包,产生的名称空间的名字同样来源于文件,即包下的__init__.py,导入包本质就是在导入该文件 #3、包A和包B下有同名模块也不会冲突,如A.a与B.a来自俩个命名空间
8.4 包的使用
8.4.1 示例文件
glance/ #Top-level package ├── __init__.py #Initialize the glance package ├── api #Subpackage for api │ ├── __init__.py │ ├── policy.py │ └── versions.py ├── cmd #Subpackage for cmd │ ├── __init__.py │ └── manage.py └── db #Subpackage for db ├── __init__.py └── models.py
8.4.2 文件内容
View Code执行文件与示范文件在同级目录下
8.4.3 包的使用之import
1 import glance.db.models
2 glance.db.models.register_models('mysql')
单独导入包名称时不会导入包中所有包含的所有子模块,如
#在与glance同级的test.py中 import glance glance.cmd.manage.main() ''' 执行结果: AttributeError: module 'glance' has no attribute 'cmd' '''
解决方法:
1 #glance/__init__.py 2 from . import cmd 3 4 #glance/cmd/__init__.py 5 from . import manage
执行:
1 #在于glance同级的test.py中 2 import glance 3 glance.cmd.manage.main()
8.4.4 包的使用之from ... import ...
需要注意的是from后import导入的模块,必须是明确的一个不能带点,否则会有语法错误,如:from a import b.c是错误语法
1 from glance.db import models
2 models.register_models('mysql')
3
4 from glance.db.models import register_models
5 register_models('mysql')
8.4.5 from glance.api import *
在讲模块时,我们已经讨论过了从一个模块内导入所有*,此处我们研究从一个包导入所有*。
此处是想从包api中导入所有,实际上该语句只会导入包api下__init__.py文件中定义的名字,我们可以在这个文件中定义__all___:
1 #在__init__.py中定义
2 x=10
3
4 def func():
5 print('from api.__init.py')
6
7 __all__=['x','func','policy']
此时我们在于glance同级的文件中执行from glance.api import *就导入__all__中的内容(versions仍然不能导入)。
#在__init__.py中定义 x=10 def func(): print('from api.__init.py') __all__=['x','func','policy']
此时我们在于glance同级的文件中执行from glance.api import *就导入__all__中的内容(versions仍然不能导入)。
练习:
#执行文件中的使用效果如下,请处理好包的导入
from glance import *
get()
create_resource('a.conf')
main()
register_models('mysql')
View Code8.4.6 绝对导入和相对导入
我们的最顶级包glance是写给别人用的,然后在glance包内部也会有彼此之间互相导入的需求,这时候就有绝对导入和相对导入两种方式:
绝对导入:以glance作为起始
相对导入:用.或者..的方式最为起始(只能在一个包中使用,不能用于不同目录内)
例如:我们在glance/api/version.py中想要导入glance/cmd/manage.py
1 在glance/api/version.py 2 3 #绝对导入 4 from glance.cmd import manage 5 manage.main() 6 7 #相对导入 8 from ..cmd import manage 9 manage.main()
测试结果:注意一定要在于glance同级的文件中测试
1 from glance.api import versions
8.4.7 包以及包所包含的模块都是用来被导入的,而不是被直接执行的。而环境变量都是以执行文件为准的
比如我们想在glance/api/versions.py中导入glance/api/policy.py,有的同学一抽这俩模块是在同一个目录下,十分开心的就去做了,它直接这么做
1 #在version.py中 2 3 import policy 4 policy.get()
没错,我们单独运行version.py是一点问题没有的,运行version.py的路径搜索就是从当前路径开始的,于是在导入policy时能在当前目录下找到
但是你想啊,你子包中的模块version.py极有可能是被一个glance包同一级别的其他文件导入,比如我们在于glance同级下的一个test.py文件中导入version.py,如下
1 from glance.api import versions 2 3 ''' 4 执行结果: 5 ImportError: No module named 'policy' 6 ''' 7 8 ''' 9 分析: 10 此时我们导入versions在versions.py中执行 11 import policy需要找从sys.path也就是从当前目录找policy.py, 12 这必然是找不到的 13 '''
8.4.8 绝对导入与相对导入总结
绝对导入与相对导入 # 绝对导入: 以执行文件的sys.path为起始点开始导入,称之为绝对导入 # 优点: 执行文件与被导入的模块中都可以使用 # 缺点: 所有导入都是以sys.path为起始点,导入麻烦 # 相对导入: 参照当前所在文件的文件夹为起始开始查找,称之为相对导入 # 符号: .代表当前所在文件的文件加,..代表上一级文件夹,...代表上一级的上一级文件夹 # 优点: 导入更加简单 # 缺点: 只能在导入包中的模块时才能使用 #注意: 1. 相对导入只能用于包内部模块之间的相互导入,导入者与被导入者都必须存在于一个包内 2. attempted relative import beyond top-level package # 试图在顶级包之外使用相对导入是错误的,言外之意,必须在顶级包内使用相对导入,每增加一个.代表跳到上一级文件夹,而上一级不应该超出顶级包

浙公网安备 33010602011771号