Loading

基础数论 中国剩余定理

中国剩余定理:

\(m_1,m_2,\cdots,m_n\) 是两两互质的整数, \(M=\prod_{i=1}^nm_i,M_i=M/m_i,t_i\) 是线性同余方程 \(M_it_i\equiv 1(\bmod m_i)\) 的解,对于任意 \(n\) 个整数 \(a_1,a_2,\cdots,a_n\) 方程组

\[\begin{cases} x\equiv a_1\ (\bmod p)\\ x\equiv a_2\ (\bmod p)\\    \vdots\\ x\equiv a_n\ (\bmod p) \end{cases} \]

的解为 \(x=\sum_{i=1}^na_iM_it_i\)

\(\because M_i=M/m_i\)

\(\therefore M_i\) 是除 \(m_i\) 之外所有模数的倍数

\(\therefore \forall k!=i,a_iM_it_i\equiv0\ (\bmod m_k)\)

\(\because a_iM_it_i\equiv a_i\ (\bmod m_i)\)

\(\therefore x=\sum_{i=1}^na_iM_it_i\)​ 可使其成立

模板:

代码
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
const int maxn = 12;
typedef long long LL;
LL a[maxn], m[maxn];

void exgcd(LL a1, LL b, LL& x, LL& y)
{
	if(b){
		exgcd(b, a1%b, y, x);
		y -= (a1/b)*x;
		return ;
	}
	x = 1;
	y = 0;
	return ;
}

LL CRT(LL a[], LL m[], int n)
{
	LL M=1, ans=0, Mi, x, y;
	for(int i=1; i<=n; ++i)
		M *= m[i];
	for(int i=1; i<=n; ++i)
	{
		Mi = M/m[i];
		exgcd(Mi, m[i], x, y); // 求出 Mi 在 模 mi意义下的乘法逆元 
		x = (x%m[i] + m[i]) % m[i]; 
		ans = (ans + a[i]*x*Mi) % M;
	}
	return (ans+M) % M; // 求出最小非负整数解 
}

int main()
{
	int n;
	scanf("%d", &n);
	for(int i=1; i<=n; ++i)
		scanf("%lld%lld", &m[i], &a[i]); // mi是模数, ai是是在模 mi 意义下的同余数 
	LL ans = CRT(a, m, n);
	printf("%lld\n", ans);
}

 

扩展中国剩余定理:

与中国剩余定理同样,但 \(m_1,m_2,\cdots,m_n\) 不互质。

\(n=2\)

\[\begin{cases} x\equiv a_1(\bmod m_1)\\ x\equiv a_2(\bmod m_2) \end{cases} \Rightarrow \begin{cases} x= k_1m_1+a_1\\ x= k_2m_2+a_2 \end{cases} (k\in \mathbb{N}) \]

\(\therefore m_1k_1+a_1=m_2k_2+a_2\ \ \Rightarrow \ \ m_1k_1-m_2k_2=a_2-a_1\)

当且仅当 \(\gcd(m_1,m_2)\mid a_2-a_1\) 时有解,用 \(exgcd\) 求得一组解 \((k_1',k_2')\) ,带入方程组中得 \(x=x_0\)

$\therefore $ \(x\) 的通解为 \(x=x_0+z\times {\rm lcm}(m_1,m_2)\)

\(M={\rm lcm}(m_1,m_2),A=x_0\) ,则 \(x=A+z\times M\Rightarrow x\equiv A(\bmod M)\)

这样就把两个同余式换成了一个同余式,以此类推即可求解。

代码
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
typedef long long LL;
const int maxn = 1e5+10;

LL r[maxn], m[maxn];

LL exgcd(LL a, LL b, LL& x, LL& y)
{
	if(b){
		LL d = exgcd(b, a%b, y, x);
		y -= a/b*x;
		return d;
	}
	x = 1;	y = 0;
	return a;
}

LL quick_mul(LL a, LL b, LL mod)
{
	LL ans = 0;
	while(b>0){
		if(b&1)
			ans = (ans + a) % mod;
		a = (a << 1) % mod;
		b >>= 1;
	}
	return ans;
}

LL excrt(int n)
{
	LL M=m[1], R=r[1], k1, k2;
	for(int i=2; i<=n; ++i)
	{
		LL a=M, b=m[i];
		LL c = ((r[i]-R)%b + b) % b;// 求ax+by=c即求ax同余c(mod b),所以mod b对于答案没有影响
		LL d = exgcd(a, b, k1, k2);
		if(c%d != 0)	return -1; // 无解 
		
		k1 = quick_mul(k1, c/d, b/d); // 找出方程 ak1+bk2=c的最小非负整数解  
		R += k1 * M;
		M = a/d*b;
		R = (R%M + M) % M; 
	}
	return (R%M + M) % M;
}

int main()
{
	int n;
	scanf("%d", &n);
	for(int i=1; i<=n; ++i)
		scanf("%lld%lld", &m[i], &r[i]); // m[i] 表示模数, r[i] 表示余数 
	printf("%lld\n", excrt(n));
	return 0;
}
by ysx
posted @ 2024-07-26 19:45  班级账号  阅读(42)  评论(0)    收藏  举报