算法总结

递归算法:

例如使用递归算法 判断回文字符串

思路:
第一点,是否存在一种符合条件的分解。先判断给定字符串的首尾字符是否相等,若相等,则判断去掉首尾字符后的字符串是否为回文,若不相等,则该字符串不是回文。

第二点, 这种分解是否存在一种简单情境呢?
简单情境在使用递归的时候是必须的,否则你的递归程序可能会进入无止境的调用。对于回文问题,我们容易发现,一个只有一个字符的字符串一定是回文,所以,只有一个字符是一个简单情境,但它不是唯一的简单情境,因为空字符串也是回文。这样,我们就得到了回文问题的两个简单情境:字符数为1和字符数为0。

int isPalindrome(char *s,int n)
{
    if(n==0 || n==1)
        return 1;
    else
    {
        return ((s[0]==s[n-1]))?isPalindrome(s+1,n-2):0;
    }
}

=========================================================================================================================================
参考:常用排序算法总结(一) http://www.cnblogs.com/eniac12/p/5329396.html#s6

`排序算法归纳:

1、最常考到的 快排算法

快速排序是由东尼·霍尔所发展的一种排序算法。

在平均状况下,排序n个元素要O(nlogn)次比较。
在最坏状况下则需要O(n^2)次比较,但这种状况并不常见。
事实上,快速排序通常明显比其他O(nlogn)算法更快,因为它的内部循环可以在大部分的架构上很有效率地被实现出来。

快速排序使用分治策略(Divide and Conquer)来把一个序列分为两个子序列。步骤为:

1、从序列中挑出一个元素,作为"基准"(pivot).
2、把所有比基准值小的元素放在基准前面,所有比基准值大的元素放在基准的后面(相同的数可以到任一边),这个称为分区(partition)操作。
3、对每个分区递归地进行步骤1~2,递归的结束条件是序列的大小是0或1,这时整体已经被排好序了。
  
快速排序的代码如下:

#include <stdio.h>

// 分类 ------------ 内部比较排序
// 数据结构 --------- 数组
// 最差时间复杂度 ---- 每次选取的基准都是最大(或最小)的元素,导致每次只划分出了一个分区,需要进行n-1次划分才能结束递归,时间复杂度为O(n^2)
// 最优时间复杂度 ---- 每次选取的基准都是中位数,这样每次都均匀的划分出两个分区,只需要logn次划分就能结束递归,时间复杂度为O(nlogn)
// 平均时间复杂度 ---- O(nlogn)
// 所需辅助空间 ------ 主要是递归造成的栈空间的使用(用来保存left和right等局部变量),取决于递归树的深度,一般为O(logn),最差为O(n)       
// 稳定性 ---------- 不稳定

void Swap(int A[], int i, int j)
{
    int temp = A[i];
    A[i] = A[j];
    A[j] = temp;
}

int Partition(int A[], int left, int right)  // 划分函数
{
    int pivot = A[right];               // 这里每次都选择最后一个元素作为基准
    int tail = left - 1;                // tail为小于基准的子数组最后一个元素的索引
    for (int i = left; i < right; i++)  // 遍历基准以外的其他元素
    {
        if (A[i] <= pivot)              // 把小于等于基准的元素放到前一个子数组末尾
        {
            Swap(A, ++tail, i);
        }
    }
    Swap(A, tail + 1, right);           // 最后把基准放到前一个子数组的后边,剩下的子数组既是大于基准的子数组
                                        // 该操作很有可能把后面元素的稳定性打乱,所以快速排序是不稳定的排序算法
    return tail + 1;                    // 返回基准的索引
}

void QuickSort(int A[], int left, int right)
{
    if (left >= right)
        return;
    int pivot_index = Partition(A, left, right); // 基准的索引
    QuickSort(A, left, pivot_index - 1);
    QuickSort(A, pivot_index + 1, right);
}

int main()
{
    int A[] = { 5, 2, 9, 4, 7, 6, 1, 3, 8 }; // 从小到大快速排序
    int n = sizeof(A) / sizeof(int);
    QuickSort(A, 0, n - 1);
    printf("快速排序结果:");
    for (int i = 0; i < n; i++)
    {
        printf("%d ", A[i]);
    }
    printf("\n");
    return 0;
}
posted @ 2017-10-29 20:47  东南坼  阅读(177)  评论(0编辑  收藏  举报