Codeforces Round 951 (Div. 2) D. Fixing a Binary String 题解
Codeforces Round 951 (Div. 2) D. Fixing a Binary String 题解
318f755f-ba8c-4e2f-b571-fb88c3ed5596
var code = “318f755f-ba8c-4e2f-b571-fb88c3ed5596”
318f755f-ba8c-4e2f-b571-fb88c3ed5596
题意
You are given a binary string s s s of length n n n, consisting of zeros and ones. You can perform the following operation exactly once:
- Choose an integer p p p ( 1 ≤ p ≤ n 1 \le p \le n 1≤p≤n).
- Reverse the substring s 1 s 2 … s p s_1 s_2 \ldots s_p s1s2…sp. After this step, the string s 1 s 2 … s n s_1 s_2 \ldots s_n s1s2…sn will become s p s p − 1 … s 1 s p + 1 s p + 2 … s n s_p s_{p-1} \ldots s_1 s_{p+1} s_{p+2} \ldots s_n spsp−1…s1sp+1sp+2…sn.
- Then, perform a cyclic shift of the string s s s to the left p p p times. After this step, the initial string s 1 s 2 … s n s_1s_2 \ldots s_n s1s2…sn will become s p + 1 s p + 2 … s n s p s p − 1 … s 1 s_{p+1}s_{p+2} \ldots s_n s_p s_{p-1} \ldots s_1 sp+1sp+2…snspsp−1…s1.
For example, if you apply the operation to the string 110001100110 with p = 3 p=3 p=3, after the second step, the string will become 011001100110, and after the third step, it will become 001100110011.
A string s s s is called k k k-proper if two conditions are met:
- s 1 = s 2 = … = s k s_1=s_2=\ldots=s_k s1=s2=…=sk;
- s i + k ≠ s i s_{i+k} \neq s_i si+k=si for any i i i ( 1 ≤ i ≤ n − k 1 \le i \le n - k 1≤i≤n−k).
For example, with k = 3 k=3 k=3, the strings 000, 111000111, and 111000 are k k k-proper, while the strings 000000, 001100, and 1110000 are not.
You are given an integer k k k, which is a divisor of n n n. Find an integer p p p ( 1 ≤ p ≤ n 1 \le p \le n 1≤p≤n) such that after performing the operation, the string s s s becomes k k k-proper, or determine that it is impossible. Note that if the string is initially k k k-proper, you still need to apply exactly one operation to it.
Input
Each test consists of multiple test cases. The first line contains one integer
t
t
t (
1
≤
t
≤
1
0
4
1 \le t \le 10^4
1≤t≤104) — the number of test cases. The description of the test cases follows.
The first line of each test case contains two integers
n
n
n and
k
k
k (
1
≤
k
≤
n
1 \le k \le n
1≤k≤n,
2
≤
n
≤
1
0
5
2 \le n \le 10^5
2≤n≤105) — the length of the string
s
s
s and the value of
k
k
k. It is guaranteed that
k
k
k is a divisor of
n
n
n.
The second line of each test case contains a binary string
s
s
s of length
n
n
n, consisting of the characters 0 and 1.
It is guaranteed that the sum of
n
n
n over all test cases does not exceed
2
⋅
1
0
5
2 \cdot 10^5
2⋅105.
Output
For each test case, output a single integer — the value of
p
p
p to make the string
k
k
k-proper, or
−
1
-1
−1 if it is impossible.
If there are multiple solutions, output any of them.
题目解析
- 我们先不管操作考虑一下什么形式的串是满足条件的。
- s [ i ] s[i] s[i] != s [ i + k ] s[i+k] s[i+k]
- s [ i ] = s [ i + 1 ] = . . . = s [ i + k − 1 ] s[i] = s[i+1] =...=s[i+k-1] s[i]=s[i+1]=...=s[i+k−1]
- 要同时满足上述要求,答案的形式只有两种,要么从 1 1 1 开始,要么从 0 0 0 开始。
- 我们再思考一下操作一次后,串本质上的变化是什么。
- 我们发现本质上就是把串 s s s 分为两段 A A A 和 B B B,在用 B B B 和 A 的逆序 A的逆序 A的逆序 拼起来。
- 答案只有两个,我们用 B + A 逆 B+A逆 B+A逆 是否等于 a n s ans ans,你能想到什么?
- 字符串 h a s h hash hash。
AC代码
注:我用的是 B a s e = 131 , m o d = 805306457 Base=131,mod=805306457 Base=131,mod=805306457 的单模hash,如果想要更保险,可以考虑使用多模hash。
import sys
input = lambda: sys.stdin.readline().rstrip("\r\n")
out = sys.stdout.write
def S():
return input()
def I():
return int(input())
def MI():
return map(int, input().split())
def MF():
return map(float, input().split())
def MS():
return input().split()
def LS():
return list(input().split())
def LI():
return list(map(int, input().split()))
def print1(x):
return out(str(x) + "\n")
def print2(x, y):
return out(str(x) + " " + str(y) + "\n")
def print3(x, y, z):
return out(str(x) + " " + str(y) + " " + str(z) + "\n")
def Query(i, j):
print3('?', i, j)
sys.stdout.flush()
qi = I()
return qi
def print_arr(arr):
out(' '.join(map(str, arr)))
out(str("\n"))
# ----------------------------- # ----------------------------- #
base = 131
base1 = 13331
mod = 805306457
mod1 = 1610612741
def solve():
def get_hs(h, l, r):
return (h[r] - (h[l - 1] * pbase[r-l+1] % mod) + mod) % mod
n, k = MI()
s = S()
pre = [0]*(n+1)
pbase = [1]*(n+1)
for i in range(1,n+1):
pre[i] = (pre[i-1] * base + ord(s[i-1]) - ord('0')) % mod
pbase[i] = pbase[i-1] * base % mod
past = [0]*(n+1)
for i in range(1,n+1):
past[i] = (past[i-1] * base + ord(s[n - i]) - ord('0')) % mod
ans1,ans2 = 0,0
for i in range(n):
ans1 = (ans1*base + ((i//k) & 1)) % mod
ans2 = (ans2*base + ((i//k) & 1 ^ 1)) % mod
for p in range(1,n+1):
now = (get_hs(pre, p+1,n)*pbase[p] + get_hs(past, n + 1 - p, n)) % mod
if now == ans1 or now == ans2:
print1(p)
return
print1(-1)
for _ in range(I()):
solve()
本文来自博客园,作者:CH-Yu,转载请注明原文链接:https://www.cnblogs.com/chuanhua-blogs/p/18852129

浙公网安备 33010602011771号