岛屿数量
题目
给你一个由 '1'(陆地)和 '0'(水)组成的的二维网格,请你计算网格中岛屿的数量。
岛屿总是被水包围,并且每座岛屿只能由水平方向和/或竖直方向上相邻的陆地连接形成。
此外,你可以假设该网格的四条边均被水包围。
示例 1:
输入:grid = [
["1","1","1","1","0"],
["1","1","0","1","0"],
["1","1","0","0","0"],
["0","0","0","0","0"]
]
输出:1
示例 2:
输入:grid = [
["1","1","0","0","0"],
["1","1","0","0","0"],
["0","0","1","0","0"],
["0","0","0","1","1"]
]
输出:3
提示:
m == grid.length
n == grid[i].length
1 <= m, n <= 300
grid[i][j] 的值为 '0' 或 '1'
思路:
- 首先能想到的是dfs搜索的方式,因为只要把每一次首次碰到的"1"染色,说明已经来过,那么之后在已经染色的"1"的时候就可以直接忽略
- 染色的过程也可以使用bfs的过程完成
代码
#define bingCJ
#ifdef dfs
//可以直接在grid上更新但是没有必要
class Solution {
public:
//该函数做的是标记,可以称为染函数,染色标记的意思
void Dyesig(vector<vector<char>>& grid, vector<vector<bool>>& dye, int x, int y) {
int nr = grid.size();
int nc = grid[0].size();
//(x, y)表示的是需要开始做标记的坐标
dye[x][y] = true;
//分别表示左右
if(x < nr - 1 && !dye[x + 1][y] && grid[x + 1][y] == '1'){
Dyesig(grid, dye, x + 1, y);
}
if(y < nc - 1 && !dye[x][y + 1] && grid[x][y + 1] == '1'){
Dyesig(grid, dye, x, y + 1);
}
if(x >= 1 && !dye[x - 1][y] && grid[x - 1][y] == '1') {
Dyesig(grid, dye, x - 1, y);
}
if(y >= 1 && !dye[x][y - 1] && grid[x][y - 1] == '1') {
Dyesig(grid, dye, x, y - 1);
}
}
int numIslands(vector<vector<char>>& grid) {
int ans = 0;//用来记录岛屿的数量
int n = grid.size();
int m = grid[0].size();
//该二维数组是用来标记是不是染色的,初始化都是没有染色
vector<vector<bool>> Dye(n, vector<bool>(m, false));
//深度优先遍历的题目
for(int i = 0; i < n; i++) {
for(int j = 0; j < m; j++) {
if(grid[i][j] == '1' && !Dye[i][j]) {
//等于1而且没有被染色
ans++;
Dyesig(grid, Dye, i , j);
}
}
}
// for(int i = 0; i < n; i++) {
// for(int j = 0; j < m; j++) {
// cout << Dye[i][j] << " ";
// }
// cout << endl;
// }
return ans;
}
};
#endif
#ifdef bfs
class Solution {
public:
int dir[4][2] = {{-1, 0}, {1, 0}, {0, -1}, {0, 1}};
public:
//该函数做的是标记,可以称为染函数,染色标记的意思
void Dyesig(vector<vector<char>>& grid, vector<vector<bool>>& dye, int x, int y) {
int n = grid.size();
int m = grid[0].size();
queue<pair<int, int>> q;
q.push({x,y});
//注意只要是加入了队列就设为真
dye[x][y] = true;
while(!q.empty()) {
pair<int, int> front = q.front();
q.pop();
int qx = front.first;
int qy = front.second;
//往四个方向扩展
for(int i = 0; i < 4; i++) {
int newx = qx + dir[i][0];
int newy = qy + dir[i][1];
//判断边界条件
if(newx < 0 || newx >= n || newy < 0 || newy >= m) {
continue;
}
//如果在满足边界条件之后该节点没有被染色,那么进行染色操作
if(!dye[newx][newy] && grid[newx][newy] == '1') {
dye[newx][newy] = true;
q.push({newx, newy});
}
}
}
}
int numIslands(vector<vector<char>>& grid) {
int n = grid.size();
int m = grid[0].size();
vector<vector<bool>> Dye(n, vector<bool>(m, false));
int ans = 0;
for(int i = 0; i < n; i++) {
for(int j = 0; j < m; j++) {
if(grid[i][j] == '1' && !Dye[i][j]) {
ans++;
Dyesig(grid, Dye, i, j);
}
}
}
return ans;
}
};
#endif
#ifdef bingCJ
class Solution {
public:
int n, m;
int totalset;
int father[90000];
public:
int find(int x) {
if(father[x] == x) {
return x;
}
father[x] = find(father[x]);
return father[x];
}
void unionn(int x, int y) {
int f_x = find(x);
int f_y = find(y);
if(f_x != f_y) {
father[f_x] = f_y;
totalset--;
}
}
int numIslands(vector<vector<char>>& grid) {
n = grid.size();
m = grid[0].size();
//我们总共需要知道一共有多少的陆地,假设他们都是分开的集合
totalset = 0;
for(int i = 0; i < n; i++) {
for(int j = 0; j < m; j++) {
if(grid[i][j] == '1') {
totalset++;
}
//初始化father为被对应的坐标的大小
father[i * m + j] = i * m + j;
}
}
//一共有totalset多的陆地,我们每次合并集合只需要往右下两个方向去合并就可以了
for(int i = 0; i < n; i++) {
for(int j = 0; j < m; j++) {
if(grid[i][j] == '1') {
if(j + 1 < m && grid[i][j + 1] == '1') {
unionn(i * m + j, i * m + j + 1);
}
if(i + 1 < n && grid[i + 1][j] == '1') {
unionn(i * m + j, (i + 1) * m + j);
}
}
}
}
return totalset;
}
};
#endif

浙公网安备 33010602011771号