Spark-源码-SparkContext的初始化
Spark版本 1.3
SparkContext初始化流程
1.0 在我们的主类 main() 方法中经常会这么写
val conf = new SparkConf().setAppName("name").setMaster("local")
val sc = new SparkContext(conf)
conf 中保存的是Spark的参数
sc 是我们的Spark上下文...好无聊...
conf不再去看(里边都是对于参数的操作, 现阶段不看)
sc 从 SparkContext(config: SparkConf) 开始~
1.1 * 很重要:SparkContext是Spark提交任务到集群的入口
* 我们看一下SparkContext的主构造器
* 1.调用 createSparkEnv 方法创建 SparkEnv, 里面有一个非常重要的对象 ActorSystem
* 2.创建 TaskScheduler -> 根据提交任务的URL进行匹配 -> TaskSchedulerImpl -> SparkDeploySchedulerBackend(里面有两个Actor)
* 3.创建 DAGScheduler
* 4.taskScheduler.start()
1.2 private[spark] val env = createSparkEnv(conf, isLocal, listenerBus)
class SparkContext(config: SparkConf) extends Logging with ExecutorAllocationClient {
// 调用 def createSparkEnv() 方法, 转到:1.4
private[spark] def createSparkEnv(
conf: SparkConf,
isLocal: Boolean,
listenerBus: LiveListenerBus): SparkEnv = {
SparkEnv.createDriverEnv(conf, isLocal, listenerBus)
}
//创建一个后端调度器(schedulerBackend) 和 一个任务调度器(taskScheduler), 转到:1.5
private[spark] var (schedulerBackend, taskScheduler) =
SparkContext.createTaskScheduler(this, master)
// 通过 ActorSystem 创建了一个Actor,这个心跳是 Executors 和 DriverActor 的心跳
private val heartbeatReceiver = env.actorSystem.actorOf(
Props(new HeartbeatReceiver(taskScheduler)), "HeartbeatReceiver")
// 创建了一个DAGScheduler,以后用来把DAG切分成Stage
@volatile private[spark] var dagScheduler: DAGScheduler = _
try{
dagScheduler = new DAGScheduler(this)
}catch{...}
// start TaskScheduler after taskScheduler sets DAGScheduler reference in DAGScheduler's constructor
// 在DAG构造函数中为每个TaskScheduler设置DAGScheduler后, 启动taskScheduler(DAG源码分析, 详见后续文章) 转到:1.6
taskScheduler.start()
...
}
1.4
// SparkContext.createSparkEnv中调用了 SparkEnv.createDriverEnv
private[spark] def createDriverEnv(
conf: SparkConf,
isLocal: Boolean,
listenerBus: LiveListenerBus,
mockOutputCommitCoordinator: Option[OutputCommitCoordinator] = None): SparkEnv = {
assert(conf.contains("spark.driver.host"), "spark.driver.host is not set on the driver!")
assert(conf.contains("spark.driver.port"), "spark.driver.port is not set on the driver!")
val hostname = conf.get("spark.driver.host")
val port = conf.get("spark.driver.port").toInt
//调用 create 方法 并传入一坨参数
create(
conf,
SparkContext.DRIVER_IDENTIFIER,
hostname,
port,
isDriver = true,
isLocal = isLocal,
listenerBus = listenerBus,
mockOutputCommitCoordinator = mockOutputCommitCoordinator
)
}
private def create(
conf: SparkConf,
executorId: String,
hostname: String,
port: Int,
isDriver: Boolean,
isLocal: Boolean,
listenerBus: LiveListenerBus = null,
numUsableCores: Int = 0,
mockOutputCommitCoordinator: Option[OutputCommitCoordinator] = None): SparkEnv = {
...
// Create the ActorSystem for Akka and get the port it binds to.
val (actorSystem, boundPort) = {
val actorSystemName = if (isDriver) driverActorSystemName else executorActorSystemName
// 利用AkkaUtils这个工具类创建ActorSystem
AkkaUtils.createActorSystem(actorSystemName, hostname, port, conf, securityManager)
}
...
// 最终将创建好的ActorSystem返回给SparkEnv
// 回调步骤 new Spark() -> create() -> SparkEnv.createDriverEnv -> SparkContext.createSparkEnv()
new SparkEnv(
executorId,
actorSystem,
serializer,
closureSerializer,
cacheManager,
mapOutputTracker,
shuffleManager,
broadcastManager,
blockTransferService,
blockManager,
securityManager,
httpFileServer,
sparkFilesDir,
metricsSystem,
shuffleMemoryManager,
outputCommitCoordinator,
conf)
}
1.5
//SparkContext.createSparkEnv 中调用了 (schedulerBackend, taskScheduler) = SparkContext.createTaskScheduler(this, master)
/**
* Create a task scheduler based on a given master URL.
* Return a 2-tuple of the scheduler backend and the task scheduler.
*/
// 根据提交任务时指定的URL创建相应的TaskScheduler 关于TaskScheduler 转到:1.7
private def createTaskScheduler(sc: SparkContext,
master: String): (SchedulerBackend, TaskScheduler) = {
//模式匹配
master match {
// spark的StandAlone模式
case SPARK_REGEX(sparkUrl) =>
// 创建了一个TaskSchedulerImpl. 注: TaskScheduler是一个特质
val scheduler = new TaskSchedulerImpl(sc)
val masterUrls = sparkUrl.split(",").map("spark://" + _)
// 创建了一个SparkDeploySchedulerBackend(Spark后端部署调度器)
val backend = new SparkDeploySchedulerBackend(scheduler, sc, masterUrls)
// 调用initialize, 使用Spark后端部署调度器 初始化调度器
scheduler.initialize(backend)
(backend, scheduler)
... // 其他模式
}
}
1.6
DAGScheduler 简介
实现面向阶段调度的高级调度层。它计算每个作业的阶段DAG,跟踪哪些RDD和阶段输出具体化,并找到运行作业的最小计划。
然后,它将阶段作为TaskSets提交给在集群上运行它们的底层TaskScheduler实现。
除了提供阶段的DAG之外,此类还根据当前缓存状态确定运行每个任务的首选位置,并将这些位置传递给低级TaskScheduler。
此外,它处理由于shuffle输出文件丢失而导致的故障,在这种情况下可能需要重新提交旧阶段。在一个不是由随机文件丢失引
起的阶段内的故障由TaskScheduler处理,它将在取消整个阶段之前重试每个任务很多次。
以下是制作或查看此课程更改时使用的核对清单:
添加新数据结构时,请更新 `DAGSchedulerSuite.assertDataStructuresEmpty`以包含新结构。这将有助于捕获内存泄漏。
1.7
TaskScheduler简介
低级任务调度程序接口,目前由TaskSchedulerImpl专门实现。
该接口允许插入不同的任务调度程序。 每个TaskScheduler都为单个SparkContext调度任务。
这些调度程序从DAGScheduler为每个阶段获取提交给它们的任务集,并负责将任务发送到集群,
运行它们,如果存在故障则重试,以及减轻落后者。 他们将事件返回给DAGScheduler。

浙公网安备 33010602011771号