数据结构与算法(JAVA篇)之递归算法(三)
/**  
 *  
 * @author SunnyMoon  
 */  
  
/**  
 * 概念介绍:  
 *   
 * 归并排序:归并算法的中心是归并两个已经有序的数组,并且递归调用归并操作。  
 *   
 * 归并排序优点和缺点:比简单排序在速度上快很多;归并排序会占用双倍的存储空间。  
 *   
 * 归并排序的效率:归并排序的时间复杂度是 O(N*LogN);简单排序的复杂度是O(N2)。  
 */  
public class Recursion3 {   
  
    private long[] theArray;   
    private int nElems;   
  
    public Recursion3(int max) {//初始化数组   
        theArray = new long[max];   
        nElems = 0;   
    }   
  
    public void insert(long value) {//插入数据   
        theArray[nElems] = value;   
        nElems++;   
    }   
  
    public void display() {//显示数组中的数据   
        for (int j = 0; j < nElems; j++) {   
            System.out.print(theArray[j]+","+" ");   
        }   
    }   
    /**  
     * 归并排序算法  
     */  
    public void mergeSort() {   
        long[] workSpace = new long[nElems];//创建一个工作数组,用于排序操作使用   
        recMergeSort(workSpace, 0, nElems - 1);//执行归并排序操作   
    }   
       
    /**  
     * 递归分割数据到基本单位  
     */  
    private void recMergeSort(long[] workSpace, int lowerBound, int upperBound) {   
        if (lowerBound == upperBound) {   
            return;   
        } else {   
            int mid = (lowerBound + upperBound) / 2;   
            recMergeSort(workSpace, lowerBound, mid);   
            recMergeSort(workSpace, mid + 1, upperBound);   
            merge(workSpace, lowerBound, mid + 1, upperBound);   
        }   
    }   
       
    /**  
     * 归并操作将基本单位归并成整个有序的数组  
     */  
    private void merge(long[] workSpace, int lowPtr, int highPtr, int upperBound) {   
        int j = 0;   
        int lowerBound = lowPtr;   
        int mid = highPtr - 1;   
        int n = upperBound - lowerBound + 1;   
  
        while (lowPtr <= mid && highPtr <= upperBound) {   
            if (theArray[lowPtr] < theArray[highPtr]) {   
                workSpace[j++] = theArray[lowPtr++];   
            } else {   
                workSpace[j++] = theArray[highPtr++];   
            }   
        }   
            while (lowPtr <= mid) {   
                workSpace[j++] = theArray[lowPtr++];   
            }   
            while (highPtr <= upperBound) {   
                workSpace[j++] = theArray[highPtr++];   
            }   
            for (j = 0; j < n; j++) {   
                theArray[lowerBound + j] = workSpace[j];   
            }   
    }   
    public void println(String str){   
            System.out.println(str);   
        }   
}   
  
class MergeSortApp {//主程序   
  
    public static void main(String[] args) {   
        int maxSize = 100;   
        Recursion3 arr = new Recursion3(maxSize);   
        /**  
         * 插入值到数组  
         */  
        arr.insert(64);   
        arr.insert(21);   
        arr.insert(11);   
        arr.insert(33);   
        arr.insert(12);   
        arr.insert(85);   
        arr.insert(44);   
        arr.insert(99);   
        arr.insert(3);   
        arr.insert(0);   
        arr.insert(108);   
        arr.insert(36);   
           
        arr.println("显示排序前数据:");   
        arr.display();   
        arr.println("");     
           
        arr.mergeSort();   
           
        arr.println("显示排序后数据:");   
        arr.display();   
        arr.println("");     
    }   
}   
/**  
 *   
 * 显示排序前数据:  
 * 64, 21, 11, 33, 12, 85, 44, 99, 3, 0, 108, 36,   
 * 显示排序后数据:  
 * 0, 3, 11, 12, 21, 33, 36, 44, 64, 85, 99, 108,  
 */  
  
/**  
 * 总结:  
 * 归并排序比简单排序的效率高很多,把递归发挥的淋漓尽致,大家可以试一下。  
 * 最后给出归并排序工作过程图解。  
 */ 
 
                    
                     
                    
                 
                    
                
 
 
                
            
         
         浙公网安备 33010602011771号
浙公网安备 33010602011771号