代码改变世界

Finalize 与 Dispose 之间的区别 (转)

2013-03-05 23:09  Sam Jin  阅读(612)  评论(0)    收藏  举报

 Finalize自动释放资源,Dispose()用于手动释放资源。

一. Finalize

  Finalize很像C++的析构函数,我们在代码中的实现形式为这与C++的析构函数在形式上完全一样,但它的调用过程却大不相同。

~ClassName() {//释放你的非托管资源}

  比如类A中实现了Finalize函数,在A的一个对象a被创建时(准确的说应该是构造函数被调用之前),它的指针被插入到一个finalization链表中;在GC运行时,它将查找finalization链表中的对象指针,如果此时a已经是垃圾对象的话,它会被移入一个freachable队列中,最后GC会调用一个高优先级线程,这个线程专门负责遍历freachable队列并调用队列中所有对象的Finalize方法,至此,对象a中的非托管资源才得到了释放(当然前提是你正确实现了它的Finalize方法),而a所占用的内存资源则必需等到下一次GC才能得到释放,所以一个实现了Finalize方法的对象必需等两次GC才能被完全释放。

  由于Finalize是由GC负责调用,所以可以说是一种自动的释放方式。但是这里面要注意两个问题:第一,由于无法确定GC何时会运作,因此可能很长的一段时间里对象的资源都没有得到释放,这对于一些关键资源而言是非常要命的。第二,由于负责调用Finalize的线程并不保证各个对象的Finalize的调用顺序,这可能会带来微妙的依赖性问题。如果你在对象a的Finalize中引用了对象b,而a和b两者都实现了Finalize,那么如果b的Finalize先被调用的话,随后在调用a的Finalize时就会出现问题,因为它引用了一个已经被释放的资源。因此,在Finalize方法中应该尽量避免引用其他实现了Finalize方法的对象。

  可见,这种“自动”释放资源的方法并不能满足我们的需要,因为我们不能显示的调用它(只能由GC调用),而且会产生依赖型问题。我们需要更准确的控制资源的释放。

二. Dispose

  Dispose是提供给我们显示调用的方法。由于对Dispose的实现很容易出现问题,所以在一些书籍上(如《Effective C#》和《Applied Microsoft.Net Framework Programming》)给出了一个特定的实现模式:

 class DisposePattern :IDisposable

    {

        private System.IO.FileStream fs = new System.IO.FileStream("test.txt", System.IO.FileMode.Create);

        ~DisposePattern()

        {

            Dispose(false);

        }      

        IDisposable Members#region IDisposable Members

        public void Dispose()

        {

            //告诉GC不需要再调用Finalize方法,

            //因为资源已经被显示清理

            GC.SuppressFinalize(this);

            Dispose(true);

        }

        #endregion

                protected virtual void Dispose(bool disposing)

        {

            //由于Dispose方法可能被多线程调用,

            //所以加锁以确保线程安全

            lock (this)

            {

                if (disposing)

                {

                    //说明对象的Finalize方法并没有被执行,

                    //在这里可以安全的引用其他实现了Finalize方法的对象

                }

                if (fs != null)

                {

                    fs.Dispose();

                    fs = null; //标识资源已经清理,避免多次释放

                }

            }

        }

    }

在注释中已经有了比较清楚的描述,另外还有一点需要说明:如果DisposePattern类是派生自基类B,而B是一个实现了Dispose的类,那么DisposePattern中只需要override基类B的带参的Dispose方法即可,而不需要重写无参的Dispose和Finalize方法,此时Dispose的实现为:

class DerivedClass : DisposePattern

    {

        protected override void Dispose(bool disposing)

        {

            lock (this)

            {

                try

                {

                    //清理自己的非托管资源,

                    //实现模式与DisposePattern相同

                }

                finally

                {

                    base.Dispose(disposing);

                }

            }

        }

    }

当然,如果DerivedClass本身没有什么资源需要清理,那么就不需要重写Dispose方法了,正如我们平时做的一些对话框,虽然都是继承于System.Windows.Forms.Form,但我们常常不需要去重写基类Form的Dispose方法,因为本身没有什么非托管的咚咚需要释放。

了解GC的脾性在很多时候是非常必要的,起码在出现资源泄漏问题的时候你不至于手足无措。我写过一个生成excel报表的控件,其中对excel对象的释放就让我忙活了一阵。如果你做过excel开发的话,可能也遇到过结束excel进程之类的问题,特别是包装成一个供别人调用的库时,何时释放excel对象以确保进程结束是一个关键问题。当然,GC的内部机制非常复杂,还有许多内容可挖,但了解所有细节的成本太高,只需了解基础,够用就好。

·    using() 语法有用吗?什么是IDisposable?它是如何实现确定性终结的。

using()能自动调用Dispose方法

比如:using()会自动调用MyObject的Dispose方法

using ( MyObject myObject = new MyObject ( ) )

{

   Console.WriteLine ( "quit" ) ;

}

 

IDisposiable是显示释放对象的接口,实现IDisposiable接口的类,可以显示的释放对象。

,通过编写Dispose方法来实现显式释放资源;

// C#

class MyClass : IDisposable

{

public MyClass() {} // 构造函数

~MyClass() {} // 析构方法 (不确定的) (编译器通过重载virtual void Finalize来实现),与C++/CLI的!MyClass()等效

public void Dispose() {} // Dispose方法

public static void Test()

{

using(MyClass auto = new MyClass())

{ /* 使用auto对象 */ }

// 因为使用了using句法,编译器自动调用auto.Dispose()

// 以上代码等效于:

MyClass user = new MyClass();

try { /* 使用user对象 */ }

finally { user.Dispose(); }

}

}

 

MSDN建议按照下面的模式实现IDisposable接口:

1 public class Foo: IDisposable
2 {
3 public void Dispose()
4 {
5 Dispose(true);
6 GC.SuppressFinalize(this);
7 }
8
9 protected virtual void Dispose(bool disposing)
10 {
11 if (!m_disposed)
12 {
13 if (disposing)
14 {
15 // Release managed resources
16 }
17
18 // Release unmanaged resources
19
20 m_disposed = true;
21 }
22 }
23
24 ~Foo()
25 {
26 Dispose(false);
27 }
28
29 private bool m_disposed;
30 }
31

在.NET的对象中实际上有两个用于释放资源的函数:Dispose和Finalize。Finalize的目的是用于释放非托管的资源,而Dispose是用于释放所有资源,包括托管的和非托管的。

在这个模式中,void Dispose(bool disposing)函数通过一个disposing参数来区别当前是否是被Dispose()调用。如果是被Dispose()调用,那么需要同时释放 托管和非托管的资源。如果是被~Foo()(也就是C#的Finalize())调用了,那么只需要释放非托管的资源即可。

这是因为,Dispose()函数是被其它代码显式调用并要求释放资源的,而Finalize是被GC调用的。在GC调用的时候Foo所引用的其它 托管对象可能还不需要被销毁,并且即使要销毁,也会由GC来调用。因此在Finalize中只需要释放非托管资源即可。另外一方面,由于在 Dispose()中已经释放了托管和非托管的资源,因此在对象被GC回收时再次调用Finalize是没有必要的,所以在Dispose()中调用 GC.SuppressFinalize(this)避免重复调用Finalize。

然而,即使重复调用Finalize和Dispose也是不存在问题的,因为有变量m_disposed的存在,资源只会被释放一次,多余的调用会被忽略过去。

因此,上面的模式保证了:

1、 Finalize只释放非托管资源;

2、 Dispose释放托管和非托管资源;

3、 重复调用Finalize和Dispose是没有问题的;

4、 Finalize和Dispose共享相同的资源释放策略,因此他们之间也是没有冲突的。

在C#中,这个模式需要显式地实现,其中C#的~Foo()函数代表了Finalize()。而在C++/CLI中,这个模式是自动实现的,C++的类析构函数则是不一样的。

按照C++语义,析构函数在超出作用域,或者delete的时候被调用。在Managed C++(即.NET 1.1中的托管C++)中,析构函数相当于CLR中的Finalize()方法,在垃圾收集的时候由GC调用,因此,调用的时机是不明确的。在.NET 2.0的C++/CLI中,析构函数的语义被修改为等价与Dispose()方法,这就隐含了两件事情:

1、 所有的C++/CLI中的CLR类都实现了接口IDisposable,因此在C#中可以用using关键字来访问这个类的实例。

2、 析构函数不再等价于Finalize()了。

对于第一点,这是一件好事,我认为在语义上Dispose()更加接近于C++析构函数。对于第二点,Microsoft进行了一次扩展,做法是引入了“!”函数,如下所示:

1 public ref class Foo
2 {
3 public:
4 Foo();
5 ~Foo(); // destructor
6 !Foo(); // finalizer
7 };
8

“!”函数(我实在不知道应该怎么称呼它)取代原来Managed C++中的Finalize()被GC调用。MSDN建议,为了减少代码的重复,可以写这样的代码:

1 ~Foo()
2 {
3 //释放托管的资源
4 this->!Foo();
5 }
6
7 !Foo()
8 {
9 //释放非托管的资源
10 }
11

对于上面这个类,实际上C++/CLI生成对应的C#代码是这样的:

1 public class Foo

2 {
3 private void !Foo()
4 {
5 // 释放非托管的资源
6 }
7
8 private void ~Foo()
9 {
10 // 释放托管的资源
11 !Foo();
12 }
13
14 public Foo()
15 {
16 }
17
18 public void Dispose()
19 {
20 Dispose(true);
21 GC.SuppressFinalize(this);
22 }
23
24 protected virtual void Dispose(bool disposing)
25 {
26 if (disposing)
27 {
28 ~Foo();
29 }
30 else
31 {
32 try
33 {
34 !Foo();
35 }
36 finally
37 {
38 base.Finalize();
39 }
40 }
41 }
42
43 protected void Finalize()
44 {
45 Dispose(false);
46 }
47 }
48

由于~Foo()和!Foo()不会被重复调用(至少MS这样认为),因此在这段代码中没有和前面m_disposed相同的变量,但是基本的结构是一样的。

并且,可以看到实际上并不是~Foo()和!Foo()就是Dispose和Finalize,而是C++/CLI编译器生成了两个Dispose 和Finalize函数,并在合适的时候调用它们。C++/CLI其实已经做了很多工作,但是唯一的一个问题就是依赖于用户在~Foo()中调 用!Foo()。

关于资源释放,最后一点需要提的是Close函数。在语义上它和Dispose很类似,按照MSDN的说法,提供这个函数是为了让用户感觉舒服一点,因为对于某些对象,例如文件,用户更加习惯调用Close()。

然而,毕竟这两个函数做的是同一件事情,因此MSDN建议的代码就是:

1 public void Close()

2 {
3 Dispose(();
4 }
5
6
这里直接调用不带参数的Dispose函数以获 得和Dispose相同的语义。这样似乎就圆满了,但是从另外一方面说,如果同时提供了Dispose和Close,会给用户带来一些困惑。没有看到代码 细节的前提下,很难知道这两个函数到底有什么区别。因此在.NET的代码设计规范中说,这两个函数实际上只能让用户用一个。因此建议的模式是:

1 public class Foo: IDisposable
2 {
3 public void Close()
4 {
5 Dispose();
6 }
7
8 void IDisposable.Dispose()
9 {
10 Dispose(true);
11 GC.SuppressFinalize(this);
12 }
13
14 protected virtual void Dispose(bool disposing)
15 {
16 // 同前
17 }
18 }
19

这里使用了一个所谓的接口显式实现:void IDisposable.Dispose()。这个显式实现只能通过接口来访问,但是不能通过实现类来访问。因此:

1 Foo foo = new Foo();

2
3 foo.Dispose(); // 错误
4 (foo as IDisposable).Dispose(); // 正确
5

----------------------------------以下是CSDN上一位高手的总结----------------------------------------------

1、Finalize方法(C#中是析构函数,以下称析构函数)是用于释放非托管资源的,而托管资源会由GC自动回收。所以,我们也可以这样来区分 托管和非托管资源。所有会由GC自动回收的资源,就是托管的资源,而不能由GC自动回收的资源,就是非托管资源。在我们的类中直接使用非托管资源的情况很 少,所以基本上不用我们写析构函数。

2、大部分的非托管资源会给系统带来很多负面影响,例如数据库连接不被释放就可能导致连接池中的可用数据库连接用尽。文件不关闭会导致其它进程无法读写这个文件等等。

实现模型:
1、由于大多数的非托管资源都要求可以手动释放,所以,我们应该专门为释放非托管资源公开一个方法。实现IDispose接口的Dispose方法是最好的模型,因为C#支持using语句快,可以在离开语句块时自动调用Dispose方法。

2、虽然可以手动释放非托管资源,我们仍然要在析构函数中释放非托管资源,这样才是安全的应用程序。否则如果因为程序员的疏忽忘记了手动释放非托管资源, 那么就会带来灾难性的后果。所以说在析构函数中释放非托管资源,是一种补救的措施,至少对于大多数类来说是如此。

3、由于析构函数的调用将导致GC对对象回收的效率降低,所以如果已经完成了析构函数该干的事情(例如释放非托管资源),就应当使用SuppressFinalize方法告诉GC不需要再执行某个对象的析构函数。

4、析构函数中只能释放非托管资源而不能对任何托管的对象/资源进行操作。因为你无法预测析构函数的运行时机,所以,当析构函数被执行的时候,也许你进行操作的托管资源已经被释放了。这样将导致严重的后果。

5、(这是一个规则)如果一个类拥有一个实现了IDispose接口类型的成员,并创建(注意是创建,而不是接收,必须是由类自己创建)它的实例对象,则 这个类也应该实现IDispose接口,并在Dispose方法中调用所有实现了IDispose接口的成员的Dispose方法。
只有这样的才能保证所有实现了IDispose接口的类的对象的Dispose方法能够被调用到,确保可以手动释放任何需要释放的资源。