j.u.c系列(06)---之锁条件:Condition

  

写在前面

  在没有Lock之前,我们使用synchronized来控制同步,配合Object的wait()、notify()系列方法可以实现等待/通知模式。在Java SE5后,Java提供了Lock接口,相对于Synchronized而言,Lock提供了条件Condition,对线程的等待、唤醒操作更加详细和灵活。

Condition简介

  Condition的作用是对锁进行更精确的控制。Condition中的await()方法相当于Object的wait()方法,Condition中的signal()方法相当于Object的notify()方法,Condition中的signalAll()相当于Object的notifyAll()方法。不同的是,Object中的wait(),notify(),notifyAll()方法是和"同步锁"(synchronized关键字)捆绑使用的;而Condition是需要与"互斥锁"/"共享锁"捆绑使用的。

void await()
// 造成当前线程在接到信号、被中断或到达指定等待时间之前一直处于等待状态。
boolean await(long time, TimeUnit unit)
// 造成当前线程在接到信号、被中断或到达指定等待时间之前一直处于等待状态。
long awaitNanos(long nanosTimeout)
// 造成当前线程在接到信号之前一直处于等待状态。【注意:该方法对中断不敏感】
void awaitUninterruptibly()
// 造成当前线程在接到信号、被中断或到达指定最后期限之前一直处于等待状态。
boolean awaitUntil(Date deadline)
// 唤醒一个等待线程。
void signal()
// 唤醒所有等待线程。
void signalAll()

 Condtion的实现

  获取一个Condition必须要通过Lock的newCondition()方法。该方法定义在接口Lock下面,返回的结果是绑定到此 Lock 实例的新 Condition 实例。Condition为一个接口,其下仅有一个实现类ConditionObject,由于Condition的操作需要获取相关的锁,而AQS则是同步锁的实现基础,所以ConditionObject则定义为AQS的内部类。定义如下:

public abstract class AbstractQueuedLongSynchronizer extends AbstractOwnableSynchronizer implements java.io.Serializable {
    public class ConditionObject implements Condition, java.io.Serializable {}
}

等待队列

  每个Condition对象都包含着一个FIFO队列,该队列是Condition对象通知/等待功能的关键。在队列中每一个节点都包含着一个线程引用,该线程就是在该Condition对象上等待的线程。我们看Condition的定义就明白了:

public class ConditionObject implements Condition, java.io.Serializable {
    private static final long serialVersionUID = 1173984872572414699L;
    
    //头节点
    private transient Node firstWaiter;
    //尾节点
    private transient Node lastWaiter;

    public ConditionObject() {
    }
    
    /** 省略方法 **/
}

  从上面代码可以看出Condition拥有首节点(firstWaiter),尾节点(lastWaiter)。当前线程调用await()方法,将会以当前线程构造成一个节点(Node),并将节点加入到该队列的尾部。结构如下:

 

  Node里面包含了当前线程的引用。Node定义与AQS的CLH同步队列的节点使用的都是同一个类(AbstractQueuedSynchronized.Node静态内部类)。

  Condition的队列结构比CLH同步队列的结构简单些,新增过程较为简单只需要将原尾节点的nextWaiter指向新增节点,然后更新lastWaiter即可。

等待(await)

  调用Condition的await()方法会使当前线程进入等待状态,同时会加入到Condition等待队列同时释放锁。当从await()方法返回时,当前线程一定是获取了Condition相关连的锁。

    public final void await() throws InterruptedException {
        // 当前线程中断
        if (Thread.interrupted())
            throw new InterruptedException();
        //当前线程加入等待队列
        Node node = addConditionWaiter();
        //释放锁
        long savedState = fullyRelease(node);
        int interruptMode = 0;
        /**
         * 检测此节点的线程是否在同步队上,如果不在,则说明该线程还不具备竞争锁的资格,则继续等待
         * 直到检测到此节点在同步队列上
         */
        while (!isOnSyncQueue(node)) {
            //线程挂起
            LockSupport.park(this);
            //如果已经中断了,则退出
            if ((interruptMode = checkInterruptWhileWaiting(node)) != 0)
                break;
        }
        //竞争同步状态
        if (acquireQueued(node, savedState) && interruptMode != THROW_IE)
            interruptMode = REINTERRUPT;
        //清理下条件队列中的不是在等待条件的节点
        if (node.nextWaiter != null) // clean up if cancelled
            unlinkCancelledWaiters();
        if (interruptMode != 0)
            reportInterruptAfterWait(interruptMode);
    }

  此段代码的逻辑是:首先将当前线程新建一个节点同时加入到条件队列中,然后释放当前线程持有的同步状态。然后则是不断检测该节点代表的线程释放出现在CLH同步队列中(收到signal信号之后就会在AQS队列中检测到),如果不存在则一直挂起,否则参与竞争同步状态。

  加入条件队列(addConditionWaiter())源码如下:

    private Node addConditionWaiter() {
        Node t = lastWaiter;    //尾节点
        //Node的节点状态如果不为CONDITION,则表示该节点不处于等待状态,需要清除节点
        if (t != null && t.waitStatus != Node.CONDITION) {
            //清除条件队列中所有状态不为Condition的节点
            unlinkCancelledWaiters();
            t = lastWaiter;
        }
        //当前线程新建节点,状态CONDITION
        Node node = new Node(Thread.currentThread(), Node.CONDITION);
        /**
         * 将该节点加入到条件队列中最后一个位置
         */
        if (t == null)
            firstWaiter = node;
        else
            t.nextWaiter = node;
        lastWaiter = node;
        return node;
    }

  该方法主要是将当前线程加入到Condition条件队列中。当然在加入到尾节点之前会清楚所有状态不为Condition的节点。

  fullyRelease(Node node),负责释放该线程持有的锁。

    final long fullyRelease(Node node) {
        boolean failed = true;
        try {
            //节点状态--其实就是持有锁的数量
            long savedState = getState();
            //释放锁
            if (release(savedState)) {
                failed = false;
                return savedState;
            } else {
                throw new IllegalMonitorStateException();
            }
        } finally {
            if (failed)
                node.waitStatus = Node.CANCELLED;
        }
    }

  isOnSyncQueue(Node node):如果一个节点刚开始在条件队列上,现在在同步队列上获取锁则返回true

    final boolean isOnSyncQueue(Node node) {
        //状态为Condition,获取前驱节点为null,返回false
        if (node.waitStatus == Node.CONDITION || node.prev == null)
            return false;
        //后继节点不为null,肯定在CLH同步队列中
        if (node.next != null)
            return true;

        return findNodeFromTail(node);
    }

  unlinkCancelledWaiters():负责将条件队列中状态不为Condition的节点删除

        private void unlinkCancelledWaiters() {
            Node t = firstWaiter;
            Node trail = null;
            while (t != null) {
                Node next = t.nextWaiter;
                if (t.waitStatus != Node.CONDITION) {
                    t.nextWaiter = null;
                    if (trail == null)
                        firstWaiter = next;
                    else
                        trail.nextWaiter = next;
                    if (next == null)
                        lastWaiter = trail;
                }
                else
                    trail = t;
                t = next;
            }
        }

通知(signal)

  调用Condition的signal()方法,将会唤醒在等待队列中等待最长时间的节点(条件队列里的首节点),在唤醒节点前,会将节点移到CLH同步队列中。

    public final void signal() {
        //检测当前线程是否为拥有锁的独
        if (!isHeldExclusively())
            throw new IllegalMonitorStateException();
        //头节点,唤醒条件队列中的第一个节点
        Node first = firstWaiter;
        if (first != null)
            doSignal(first);    //唤醒
    }

  该方法首先会判断当前线程是否已经获得了锁,这是前置条件。然后唤醒条件队列中的头节点。

  doSignal(Node first):唤醒头节点

    private void doSignal(Node first) {
        do {
            //修改头结点,完成旧头结点的移出工作
            if ( (firstWaiter = first.nextWaiter) == null)
                lastWaiter = null;
            first.nextWaiter = null;
        } while (!transferForSignal(first) &&
                (first = firstWaiter) != null);
    }

  doSignal(Node first)主要是做两件事:1.修改头节点,2.调用transferForSignal(Node first) 方法将节点移动到CLH同步队列中。transferForSignal(Node first)源码如下:

     final boolean transferForSignal(Node node) {
        //将该节点从状态CONDITION改变为初始状态0,
        if (!compareAndSetWaitStatus(node, Node.CONDITION, 0))
            return false;

        //将节点加入到syn队列中去,返回的是syn队列中node节点前面的一个节点
        Node p = enq(node);
        int ws = p.waitStatus;
        //如果结点p的状态为cancel 或者修改waitStatus失败,则直接唤醒
        if (ws > 0 || !compareAndSetWaitStatus(p, ws, Node.SIGNAL))
            LockSupport.unpark(node.thread);
        return true;
    }

整个通知的流程如下:

  1. 判断当前线程是否已经获取了锁,如果没有获取则直接抛出异常,因为获取锁为通知的前置条件。
  2. 如果线程已经获取了锁,则将唤醒条件队列的首节点
  3. 唤醒首节点是先将条件队列中的头节点移出,然后调用AQS的enq(Node node)方法将其安全地移到CLH同步队列中
  4. 最后判断如果该节点的同步状态是否为Cancel,或者修改状态为Signal失败时,则直接调用LockSupport唤醒该节点的线程。

总结

  一个线程获取锁后,通过调用Condition的await()方法,会将当前线程先加入到条件队列中,然后释放锁,最后通过isOnSyncQueue(Node node)方法不断自检看节点是否已经在CLH同步队列了,如果是则尝试获取锁,否则一直挂起。当线程调用signal()方法后,程序首先检查当前线程是否获取了锁,然后通过doSignal(Node first)方法唤醒CLH同步队列的首节点。被唤醒的线程,将从await()方法中的while循环中退出来,然后调用acquireQueued()方法竞争同步状态。

synchronized原理

  synchronized原理在java中,每一个对象有且仅有一个同步锁。这也意味着,同步锁是依赖于对象而存在。
当我们调用某对象的synchronized方法时,就获取了该对象的同步锁。例如,synchronized(obj)就获取了“obj这个对象”的同步锁。
不同线程对同步锁的访问是互斥的。也就是说,某时间点,对象的同步锁只能被一个线程获取到!通过同步锁,我们就能在多线程中,实现对“对象/方法”的互斥访问。 例如,现在有两个线程A和线程B,它们都会访问“对象obj的同步锁”。假设,在某一时刻,线程A获取到“obj的同步锁”并在执行一些操作;而此时,线程B也企图获取“obj的同步锁” —— 线程B会获取失败,它必须等待,直到线程A释放了“该对象的同步锁”之后线程B才能获取到“obj的同步锁”从而才可以运行。

synchronized基本规则

  synchronized基本规则我们将synchronized的基本规则总结为下面3条,并通过实例对它们进行说明。
  第一条: 当一个线程访问“某对象”的“synchronized方法”或者“synchronized代码块”时,其他线程对“该对象”的该“synchronized方法”或者“synchronized代码块”的访问将被阻塞。
  第二条: 当一个线程访问“某对象”的“synchronized方法”或者“synchronized代码块”时,其他线程仍然可以访问“该对象”的非同步代码块。
  第三条: 当一个线程访问“某对象”的“synchronized方法”或者“synchronized代码块”时,其他线程对“该对象”的其他的“synchronized方法”或者“synchronized代码块”的访问将被阻塞。

 实例锁 -- 锁在某一个实例对象上。如果该类是单例,那么该锁也具有全局锁的概念。
               实例锁对应的就是synchronized关键字。

全局锁 -- 该锁针对的是类,无论实例多少个对象,那么线程都共享该锁。
               全局锁对应的就是static synchronized(或者是锁在该类的class或者classloader对象上)。

Condtion的实现

import java.util.concurrent.locks.Lock;
import java.util.concurrent.locks.Condition;
import java.util.concurrent.locks.ReentrantLock;

class BoundedBuffer {
    final Lock lock = new ReentrantLock();
    final Condition notFull  = lock.newCondition(); 
    final Condition notEmpty = lock.newCondition(); 

    final Object[] items = new Object[5];
    int putptr, takeptr, count;

    public void put(Object x) throws InterruptedException {
        lock.lock();    //获取锁
        try {
            // 如果“缓冲已满”,则等待;直到“缓冲”不是满的,才将x添加到缓冲中。
            while (count == items.length)
                notFull.await();
            // 将x添加到缓冲中
            items[putptr] = x; 
            // 将“put统计数putptr+1”;如果“缓冲已满”,则设putptr为0。
            if (++putptr == items.length) putptr = 0;
            // 将“缓冲”数量+1
            ++count;
            // 唤醒take线程,因为take线程通过notEmpty.await()等待
            notEmpty.signal();

            // 打印写入的数据
            System.out.println(Thread.currentThread().getName() + " put  "+ (Integer)x);
        } finally {
            lock.unlock();    // 释放锁
        }
    }

    public Object take() throws InterruptedException {
        lock.lock();    //获取锁
        try {
            // 如果“缓冲为空”,则等待;直到“缓冲”不为空,才将x从缓冲中取出。
            while (count == 0) 
                notEmpty.await();
            // 将x从缓冲中取出
            Object x = items[takeptr]; 
            // 将“take统计数takeptr+1”;如果“缓冲为空”,则设takeptr为0。
            if (++takeptr == items.length) takeptr = 0;
            // 将“缓冲”数量-1
            --count;
            // 唤醒put线程,因为put线程通过notFull.await()等待
            notFull.signal();

            // 打印取出的数据
            System.out.println(Thread.currentThread().getName() + " take "+ (Integer)x);
            return x;
        } finally {
            lock.unlock();    // 释放锁
        }
    } 
}

public class ConditionTest2 {
    private static BoundedBuffer bb = new BoundedBuffer();

    public static void main(String[] args) {
        // 启动10个“写线程”,向BoundedBuffer中不断的写数据(写入0-9);
        // 启动10个“读线程”,从BoundedBuffer中不断的读数据。
        for (int i=0; i<10; i++) {
            new PutThread("p"+i, i).start();
            new TakeThread("t"+i).start();
        }
    }

    static class PutThread extends Thread {
        private int num;
        public PutThread(String name, int num) {
            super(name);
            this.num = num;
        }
        public void run() {
            try {
                Thread.sleep(1);    // 线程休眠1ms
                bb.put(num);        // 向BoundedBuffer中写入数据
            } catch (InterruptedException e) {
            }
        }
    }

    static class TakeThread extends Thread {
        public TakeThread(String name) {
            super(name);
        }
        public void run() {
            try {
                Thread.sleep(10);                    // 线程休眠1ms
                Integer num = (Integer)bb.take();    // 从BoundedBuffer中取出数据
            } catch (InterruptedException e) {
            }
        }
    }
}

 

p1 put  1
p4 put  4
p5 put  5
p0 put  0
p2 put  2
t0 take 1
p3 put  3
t1 take 4
p6 put  6
t2 take 5
p7 put  7
t3 take 0
p8 put  8
t4 take 2
p9 put  9
t5 take 3
t6 take 6
t7 take 7
t8 take 8
t9 take 9

(01) BoundedBuffer 是容量为5的缓冲,缓冲中存储的是Object对象,支持多线程的读/写缓冲。多个线程操作“一个BoundedBuffer对象”时,它们通过互斥锁lock对缓冲区items进行互斥访问;而且同一个BoundedBuffer对象下的全部线程共用“notFull”和“notEmpty”这两个Condition。
       notFull用于控制写缓冲,notEmpty用于控制读缓冲。当缓冲已满的时候,调用put的线程会执行notFull.await()进行等待;当缓冲区不是满的状态时,就将对象添加到缓冲区并将缓冲区的容量count+1,最后,调用notEmpty.signal()缓冲notEmpty上的等待线程(调用notEmpty.await的线程)。 简言之,notFull控制“缓冲区的写入”,当往缓冲区写入数据之后会唤醒notEmpty上的等待线程。
       同理,notEmpty控制“缓冲区的读取”,当读取了缓冲区数据之后会唤醒notFull上的等待线程。
(02) 在ConditionTest2的main函数中,启动10个“写线程”,向BoundedBuffer中不断的写数据(写入0-9);同时,也启动10个“读线程”,从BoundedBuffer中不断的读数据。

 

posted @ 2018-03-06 21:03  qtyy  阅读(343)  评论(0编辑  收藏  举报