go panic 和 recover
https://draveness.me/golang/docs/part2-foundation/ch05-keyword/golang-panic-recover/
func test(){
fmt.Println("run......")
defer func() {
if err:=recover();err != nil{
fmt.Println(err)
}
}()
panic("test")
// 往下不会执行
}
func main() {
test()
fmt.Println("fsdfsdf")
}
//
run......
test
fsdfsdf
进程 已完成,退出代码为 0
package main
import (
"fmt"
"zap/logger"
)
func main() {
defer func() {
if err:=recover();err != nil{
fmt.Println(err)
}
}()
panic("test")
fmt.Println("fdsf") //stop run
}
test
进程 已完成,退出代码为 0
func Demoreset(path string) {
f, err := os.Create(path)
defer f.Close()
defer func() {
if r := recover(); r != nil {
logger.Error("join template parse failed:", err)
//log.Fatalln(r) //不要使用log.fatelln莫名问题,可能本身就记录失败 退出代码为1
}
}()
if err != nil {
panic("1")
fmt.Errorf("create file error is %s", err)
}
fmt.Println(f.Name()) //我是不会被执行到
}
func main() {
Demoreset("/data") //is exits
fmt.Println("err") //不加recover()我是不会被执行的,会panic
}
-------------------------
//即使返回error也会继续往下面走,除非panic,不加recover()
func Demoreset(path string) error {
f, err := os.Open(path)
defer f.Close()
//defer func() {
// if r := recover(); r != nil {
// fmt.Println(r)
//logger.Error("join template parse failed:", err)
//log.Fatalln(r) //不要使用log.fatelln莫名问题,可能本身就记录失败,
// }
//}()
if err != nil {
//panic("1")
return fmt.Errorf("is a panic errors %v", err) //即使返回error也会继续往下面走,除非panic,不加recover()
}
fmt.Println(f.Name()) //我是不会被执行到
return nil
}
func main() {
if err := Demoreset("/dataxxx"); err != nil {
fmt.Println(err)
}
fmt.Println("is a err") //即使是return err也是继续往这里执行,除非panic
}

-----------
func JoinTemplateFromTemplateContent(templateContent, ip, cgroup string) []byte {
setKubeadmAPI(Version)
tmpl, err := template.New("text").Parse(templateContent)
defer func() {
if r := recover(); r != nil {
logger.Error("join template parse failed:", err)
}
}()
if err != nil {
panic(1)
}
var envMap = make(map[string]interface{})
envMap["Master0"] = IPFormat(MasterIPs[0])
envMap["Master"] = ip
envMap["TokenDiscovery"] = JoinToken
envMap["TokenDiscoveryCAHash"] = TokenCaCertHash
envMap["VIP"] = VIP
envMap["KubeadmApi"] = KubeadmAPI
envMap["CriSocket"] = CriSocket
envMap["CgroupDriver"] = cgroup
var buffer bytes.Buffer
_ = tmpl.Execute(&buffer, envMap)
return buffer.Bytes()
}
本节将分析 Go 语言中两个经常成对出现的两个关键字 — panic 和 recover。这两个关键字与上一节提到的 defer 有紧密的联系,它们都是 Go 语言中的内置函数,也提供了互补的功能。

图 5-12 panic 触发的递归延迟调用
panic能够改变程序的控制流,调用panic后会立刻停止执行当前函数的剩余代码,并在当前 Goroutine 中递归执行调用方的defer;recover可以中止panic造成的程序崩溃。它是一个只能在defer中发挥作用的函数,在其他作用域中调用不会发挥作用;
5.4.1 现象 #
我们先通过几个例子了解一下使用 panic 和 recover 关键字时遇到的现象,部分现象也与上一节分析的 defer 关键字有关:
panic只会触发当前 Goroutine 的defer;recover只有在defer中调用才会生效;panic允许在defer中嵌套多次调用;
跨协程失效 #
首先要介绍的现象是 panic 只会触发当前 Goroutine 的延迟函数调用,我们可以通过如下所示的代码了解该现象:
当我们运行这段代码时会发现 main 函数中的 defer 语句并没有执行,执行的只有当前 Goroutine 中的 defer。
前面我们曾经介绍过 defer 关键字对应的 runtime.deferproc 会将延迟调用函数与调用方所在 Goroutine 进行关联。所以当程序发生崩溃时只会调用当前 Goroutine 的延迟调用函数也是非常合理的。

图 5-13 panic 触发当前 Goroutine 的延迟调用
如上图所示,多个 Goroutine 之间没有太多的关联,一个 Goroutine 在 panic 时也不应该执行其他 Goroutine 的延迟函数。
失效的崩溃恢复 #
初学 Go 语言的读者可能会写出下面的代码,在主程序中调用 recover 试图中止程序的崩溃,但是从运行的结果中我们也能看出,下面的程序没有正常退出。
仔细分析一下这个过程就能理解这种现象背后的原因,recover 只有在发生 panic 之后调用才会生效。然而在上面的控制流中,recover 是在 panic 之前调用的,并不满足生效的条件,所以我们需要在 defer 中使用 recover 关键字。
嵌套崩溃 #
Go 语言中的 panic 是可以多次嵌套调用的。一些熟悉 Go 语言的读者很可能也不知道这个知识点,如下所示的代码就展示了如何在 defer 函数中多次调用 panic:
从上述程序输出的结果,我们可以确定程序多次调用 panic 也不会影响 defer 函数的正常执行,所以使用 defer 进行收尾工作一般来说都是安全的。
5.4.2 数据结构 #
panic 关键字在 Go 语言的源代码是由数据结构 runtime._panic 表示的。每当我们调用 panic 都会创建一个如下所示的数据结构存储相关信息:
argp是指向defer调用时参数的指针;arg是调用panic时传入的参数;link指向了更早调用的runtime._panic结构;recovered表示当前runtime._panic是否被recover恢复;aborted表示当前的panic是否被强行终止;
从数据结构中的 link 字段我们就可以推测出以下的结论:panic 函数可以被连续多次调用,它们之间通过 link 可以组成链表。
结构体中的 pc、sp 和 goexit 三个字段都是为了修复 runtime.Goexit 带来的问题引入的1。runtime.Goexit 能够只结束调用该函数的 Goroutine 而不影响其他的 Goroutine,但是该函数会被 defer 中的 panic 和 recover 取消2,引入这三个字段就是为了保证该函数的一定会生效。
5.4.3 程序崩溃 #
这里先介绍分析 panic 函数是终止程序的实现原理。编译器会将关键字 panic 转换成 runtime.gopanic,该函数的执行过程包含以下几个步骤:
- 创建新的
runtime._panic并添加到所在 Goroutine 的_panic链表的最前面; - 在循环中不断从当前 Goroutine 的
_defer中链表获取runtime._defer并调用runtime.reflectcall运行延迟调用函数; - 调用
runtime.fatalpanic中止整个程序;
需要注意的是,我们在上述函数中省略了三部分比较重要的代码:
- 恢复程序的
recover分支中的代码; - 通过内联优化
defer调用性能的代码3; - 修复
runtime.Goexit异常情况的代码;
Go 语言在 1.14 通过 runtime: ensure that Goexit cannot be aborted by a recursive panic/recover 提交解决了递归
panic和recover与runtime.Goexit的冲突。
runtime.fatalpanic 实现了无法被恢复的程序崩溃,它在中止程序之前会通过 runtime.printpanics 打印出全部的 panic 消息以及调用时传入的参数:
打印崩溃消息后会调用 runtime.exit 退出当前程序并返回错误码 2,程序的正常退出也是通过 runtime.exit 实现的。
5.4.4 崩溃恢复 #
到这里我们已经掌握了 panic 退出程序的过程,接下来将分析 defer 中的 recover 是如何中止程序崩溃的。编译器会将关键字 recover 转换成 runtime.gorecover:
该函数的实现很简单,如果当前 Goroutine 没有调用 panic,那么该函数会直接返回 nil,这也是崩溃恢复在非 defer 中调用会失效的原因。在正常情况下,它会修改 runtime._panic 的 recovered 字段,runtime.gorecover 函数中并不包含恢复程序的逻辑,程序的恢复是由 runtime.gopanic 函数负责的:
上述这段代码也省略了 defer 的内联优化,它从 runtime._defer 中取出了程序计数器 pc 和栈指针 sp 并调用 runtime.recovery 函数触发 Goroutine 的调度,调度之前会准备好 sp、pc 以及函数的返回值:
当我们在调用 defer 关键字时,调用时的栈指针 sp 和程序计数器 pc 就已经存储到了 runtime._defer 结构体中,这里的 runtime.gogo 函数会跳回 defer 关键字调用的位置。
runtime.recovery 在调度过程中会将函数的返回值设置成 1。从 runtime.deferproc 的注释中我们会发现,当 runtime.deferproc 函数的返回值是 1 时,编译器生成的代码会直接跳转到调用方函数返回之前并执行 runtime.deferreturn:
跳转到 runtime.deferreturn 函数之后,程序就已经从 panic 中恢复了并执行正常的逻辑,而 runtime.gorecover 函数也能从 runtime._panic 结构中取出了调用 panic 时传入的 arg 参数并返回给调用方。
5.4.5 小结 #
panic()会退出进程,是因为调用了 exit 的系统调用;recover()并不是说只能在 defer 里面调用,而是只能在 defer 函数中才能生效,只有在 defer 函数里面,才有可能遇到_panic结构;recover()所在的 defer 函数必须和 panic 都是挂在同一个 goroutine 上,不能跨协程,因为gopanic只会执行当前 goroutine 的延迟函数;- panic 的恢复,就是重置 pc 寄存器,直接跳转程序执行的指令,跳转到原本 defer 函数执行完该跳转的位置(
deferreturn执行),从gopanic函数中跳出,不再回来,自然就不会再fatalpanic; - panic 为啥能嵌套?这个问题就像是在问为什么函数调用可以嵌套一样,因为这个本质是一样的。
分析程序的崩溃和恢复过程比较棘手,代码不是特别容易理解。我们在本节的最后还是简单总结一下程序崩溃和恢复的过程:
- 编译器会负责做转换关键字的工作;
- 将
panic和recover分别转换成runtime.gopanic和runtime.gorecover; - 将
defer转换成runtime.deferproc函数; - 在调用
defer的函数末尾调用runtime.deferreturn函数;
- 将
- 在运行过程中遇到
runtime.gopanic方法时,会从 Goroutine 的链表依次取出runtime._defer结构体并执行; - 如果调用延迟执行函数时遇到了
runtime.gorecover就会将_panic.recovered标记成 true 并返回panic的参数;- 在这次调用结束之后,
runtime.gopanic会从runtime._defer结构体中取出程序计数器pc和栈指针sp并调用runtime.recovery函数进行恢复程序; runtime.recovery会根据传入的pc和sp跳转回runtime.deferproc;- 编译器自动生成的代码会发现
runtime.deferproc的返回值不为 0,这时会跳回runtime.deferreturn并恢复到正常的执行流程;
- 在这次调用结束之后,
- 如果没有遇到
runtime.gorecover就会依次遍历所有的runtime._defer,并在最后调用runtime.fatalpanic中止程序、打印panic的参数并返回错误码 2;
分析的过程涉及了很多语言底层的知识,源代码阅读起来也比较晦涩,其中充斥着反常规的控制流程,通过程序计数器来回跳转,不过对于我们理解程序的执行流程还是很有帮助。

浙公网安备 33010602011771号