pandas教程5-合并 concat
axis (合并方向)
axis=0是预设值,因此未设定任何参数时,函数默认axis=0。
import pandas as pd
import numpy as np
#定义资料集
df1 = pd.DataFrame(np.ones((3,4))*0, columns=['a','b','c','d'])
df2 = pd.DataFrame(np.ones((3,4))*1, columns=['a','b','c','d'])
df3 = pd.DataFrame(np.ones((3,4))*2, columns=['a','b','c','d'])
#concat纵向合并
res = pd.concat([df1, df2, df3], axis=0)
#打印结果
print(res)
#     a    b    c    d
# 0  0.0  0.0  0.0  0.0
# 1  0.0  0.0  0.0  0.0
# 2  0.0  0.0  0.0  0.0
# 0  1.0  1.0  1.0  1.0
# 1  1.0  1.0  1.0  1.0
# 2  1.0  1.0  1.0  1.0
# 0  2.0  2.0  2.0  2.0
# 1  2.0  2.0  2.0  2.0
# 2  2.0  2.0  2.0  2.0
仔细观察会发现结果的index是0, 1, 2, 0, 1, 2, 0, 1, 2,若要将index重置,请看例子二。
ignore_index (重置 index)
#承上一个例子,并将index_ignore设定为True
res = pd.concat([df1, df2, df3], axis=0, ignore_index=True)
#打印结果
print(res)
#     a    b    c    d
# 0  0.0  0.0  0.0  0.0
# 1  0.0  0.0  0.0  0.0
# 2  0.0  0.0  0.0  0.0
# 3  1.0  1.0  1.0  1.0
# 4  1.0  1.0  1.0  1.0
# 5  1.0  1.0  1.0  1.0
# 6  2.0  2.0  2.0  2.0
# 7  2.0  2.0  2.0  2.0
# 8  2.0  2.0  2.0  2.0
结果的index变0, 1, 2, 3, 4, 5, 6, 7, 8。
join (合并方式)
join='outer'为预设值,因此未设定任何参数时,函数默认join='outer'。此方式是依照column来做纵向合并,有相同的column上下合并在一起,其他独自的column个自成列,原本没有值的位置皆以NaN填充。
import pandas as pd
import numpy as np
#定义资料集
df1 = pd.DataFrame(np.ones((3,4))*0, columns=['a','b','c','d'], index=[1,2,3])
df2 = pd.DataFrame(np.ones((3,4))*1, columns=['b','c','d','e'], index=[2,3,4])
#纵向"外"合并df1与df2
res = pd.concat([df1, df2], axis=0, join='outer')
print(res)
#     a    b    c    d    e
# 1  0.0  0.0  0.0  0.0  NaN
# 2  0.0  0.0  0.0  0.0  NaN
# 3  0.0  0.0  0.0  0.0  NaN
# 2  NaN  1.0  1.0  1.0  1.0
# 3  NaN  1.0  1.0  1.0  1.0
# 4  NaN  1.0  1.0  1.0  1.0
原理同上个例子的说明,但只有相同的column合并在一起,其他的会被抛弃。
#承上一个例子
#纵向"内"合并df1与df2
res = pd.concat([df1, df2], axis=0, join='inner')
#打印结果
print(res)
#     b    c    d
# 1  0.0  0.0  0.0
# 2  0.0  0.0  0.0
# 3  0.0  0.0  0.0
# 2  1.0  1.0  1.0
# 3  1.0  1.0  1.0
# 4  1.0  1.0  1.0
#重置index并打印结果
res = pd.concat([df1, df2], axis=0, join='inner', ignore_index=True)
print(res)
#     b    c    d
# 0  0.0  0.0  0.0
# 1  0.0  0.0  0.0
# 2  0.0  0.0  0.0
# 3  1.0  1.0  1.0
# 4  1.0  1.0  1.0
# 5  1.0  1.0  1.0
join_axes (依照 axes 合并)
import pandas as pd
import numpy as np
#定义资料集
df1 = pd.DataFrame(np.ones((3,4))*0, columns=['a','b','c','d'], index=[1,2,3])
df2 = pd.DataFrame(np.ones((3,4))*1, columns=['b','c','d','e'], index=[2,3,4])
#依照`df1.index`进行横向合并
res = pd.concat([df1, df2], axis=1, join_axes=[df1.index])
#打印结果
print(res)
#     a    b    c    d    b    c    d    e
# 1  0.0  0.0  0.0  0.0  NaN  NaN  NaN  NaN
# 2  0.0  0.0  0.0  0.0  1.0  1.0  1.0  1.0
# 3  0.0  0.0  0.0  0.0  1.0  1.0  1.0  1.0
#移除join_axes,并打印结果
res = pd.concat([df1, df2], axis=1)
print(res)
#     a    b    c    d    b    c    d    e
# 1  0.0  0.0  0.0  0.0  NaN  NaN  NaN  NaN
# 2  0.0  0.0  0.0  0.0  1.0  1.0  1.0  1.0
# 3  0.0  0.0  0.0  0.0  1.0  1.0  1.0  1.0
# 4  NaN  NaN  NaN  NaN  1.0  1.0  1.0  1.0
append (添加数据)
append只有纵向合并,没有横向合并。
import pandas as pd
import numpy as np
#定义资料集
df1 = pd.DataFrame(np.ones((3,4))*0, columns=['a','b','c','d'])
df2 = pd.DataFrame(np.ones((3,4))*1, columns=['a','b','c','d'])
df3 = pd.DataFrame(np.ones((3,4))*1, columns=['a','b','c','d'])
s1 = pd.Series([1,2,3,4], index=['a','b','c','d'])
#将df2合并到df1的下面,以及重置index,并打印出结果
res = df1.append(df2, ignore_index=True)
print(res)
#     a    b    c    d
# 0  0.0  0.0  0.0  0.0
# 1  0.0  0.0  0.0  0.0
# 2  0.0  0.0  0.0  0.0
# 3  1.0  1.0  1.0  1.0
# 4  1.0  1.0  1.0  1.0
# 5  1.0  1.0  1.0  1.0
#合并多个df,将df2与df3合并至df1的下面,以及重置index,并打印出结果
res = df1.append([df2, df3], ignore_index=True)
print(res)
#     a    b    c    d
# 0  0.0  0.0  0.0  0.0
# 1  0.0  0.0  0.0  0.0
# 2  0.0  0.0  0.0  0.0
# 3  1.0  1.0  1.0  1.0
# 4  1.0  1.0  1.0  1.0
# 5  1.0  1.0  1.0  1.0
# 6  1.0  1.0  1.0  1.0
# 7  1.0  1.0  1.0  1.0
# 8  1.0  1.0  1.0  1.0
#合并series,将s1合并至df1,以及重置index,并打印出结果
res = df1.append(s1, ignore_index=True)
print(res)
#     a    b    c    d
# 0  0.0  0.0  0.0  0.0
# 1  0.0  0.0  0.0  0.0
# 2  0.0  0.0  0.0  0.0
# 3  1.0  2.0  3.0  4.0
实验代码:
import pandas as pd
import numpy as np
if __name__ == '__main__':
    df1 = pd.DataFrame(np.ones((3, 4)) * 0, columns=['a', 'b', 'c', 'd'])
    df2 = pd.DataFrame(np.ones((3, 4)) * 1, columns=['a', 'b', 'c', 'd'])
    df3 = pd.DataFrame(np.ones((3, 4)) * 2, columns=['a', 'b', 'c', 'd'])
    # concat 纵向合并
    res = pd.concat([df1, df2, df3], axis=0)
    print(res)
    # 重置index
    res1 = pd.concat([df1, df2, df3], axis=0, ignore_index=True)
    print(res1)
    print('-----------------------')
    df4 = pd.DataFrame(np.ones((3, 4)) * 0, columns=['a', 'b', 'c', 'd'], index=[1, 2, 3])
    df5 = pd.DataFrame(np.ones((3, 4)) * 1, columns=['b', 'c', 'd', 'e'], index=[2, 3, 4])
    print(df4)
    print(df5)
    # join 外联
    res2 = pd.concat([df4, df5], axis=0, join='outer')
    print(res2)
    # inner 内联
    res3 = pd.concat([df4, df5],axis=0, join='inner')
    print(res3)
有时候你会发现输出跟教程上面的不一致,教程上的这章没有错误,你可以打开pycharm的科学模式,可以直接查看矩阵。
    博客网站 https://yamon.top 
个人网站 https://yamon.top/resume 
GitHub网站 https://github.com/yamonc 
欢迎前来访问
 
                    
                     
                    
                 
                    
                 posted on
 posted on 
 
                
            
         
         浙公网安备 33010602011771号
浙公网安备 33010602011771号