任务详情
- 在openEuler(推荐)或Ubuntu或Windows(不推荐)中完成下面任务,要用git记录实现过程,git commit不能低于5次
- 严格按照《密码工程》p112伪代码实现ExtendedGCD(int a, int b, int *k, int *u, int *v)算法(10')
2.根据ExtendedGCD 实现计算模逆元的函数int modInverse(int a, int m) ,返回a相对于m的模逆元(3‘)
- 在测试代码中计算74模167的模逆元。自己再设计至少两个类似测试代码。(2’)
- 提交代码和运行结果截图,git log截图
- 提交使用Markdown并转为pdf格式,或者使用doc、docx格式
严格按照《密码工程》p112伪代码实现ExtendedGCD(int a, int b, int *k, int *u, int *v)算法(10')
#include<stdio.h>
int main()
{
unsigned int a,b;
int u,v,gcd;
int extendedgcd(unsigned int a,unsigned int b,int *x,int *y);
printf("请输入a和b:");
scanf("%d%d",&a,&b);
gcd=extendedgcd(a,b,&u,&v);
printf("u=%d,v=%d\n",u,v);
printf("最大公因子k=%d\n",gcd);
printf("%d*%d+%d*%d=%d\n", u, a, v, b, gcd);
return 0;
}
int extendedgcd(unsigned int a,unsigned int b,int *x,int *y)//扩展欧几里得算法;
{
if(b==0)
{
*x=1;
*y=0;
return a;
}
int ret=extendedgcd(b,a%b,x,y);
int t=*x;
*x=*y;
*y=t-a/b*(*y);
return ret;
}
![]()
根据ExtendedGCD 实现计算模逆元的函数int modInverse(int a, int m) ,返回a相对于m的模逆元(3‘)
#include <stdio.h>
//这里用了int类型,所支持的整数范围较小且本程序仅支持非负整数,可能缺乏实际用途,仅供演示。
struct EX_GCD { //s,t是裴蜀等式中的系数,gcd是a,b的最大公约数
int s;
int t;
int gcd;
};
struct EX_GCD extended_euclidean(int a, int b) {
struct EX_GCD ex_gcd;
if (b == 0) { //b等于0时直接结束求解
ex_gcd.s = 1;
ex_gcd.t = 0;
ex_gcd.gcd = 0;
return ex_gcd;
}
int old_r = a, r = b;
int old_s = 1, s = 0;
int old_t = 0, t = 1;
while (r != 0) { //按扩展欧几里得算法进行循环
int q = old_r / r;
int temp = old_r;
old_r = r;
r = temp - q * r;
temp = old_s;
old_s = s;
s = temp - q * s;
temp = old_t;
old_t = t;
t = temp - q * t;
}
ex_gcd.s = old_s;
ex_gcd.t = old_t;
ex_gcd.gcd = old_r;
return ex_gcd;
}
int main(void) {
int a, b;
printf("Please input two integers divided by a space.\n");
scanf("%d%d", &a, &b);
if (a < b) { //如果a小于b,则交换a和b以便后续求解
int temp = a;
a = b;
b = temp;
}
struct EX_GCD solution = extended_euclidean(a, b);
printf("%d*%d+%d*%d=%d\n", solution.s, a, solution.t, b, solution.gcd);
printf("所以%d模%d的逆=%d\n", a,b,solution.t);
return 0;
}
![]()