Ploya定理学习笔记

由于自己的作息极其不规律导致比赛被打爆了 但是有的时候状态其实还行。

关于Ploya定理其实特别有意思 这里粘一个[dalao的blog](https://blog.csdn.net/lyc1635566ty/article/details/52545355)

以后有时间了我再写Ploya定理的证明吧。

LINK:[POJ Color](http://poj.org/problem?id=2154)

题目大意:给一个长度为n的项链用n种颜色进行染色 项链可以旋转求有多少种本质不同的方案数。

怎么说,ploya裸题 显然一共有n种置换 每种置换之中循环节的个数是多少呢?

经过不断试验 发现对于旋转i个位置的置换 循环节个数为gcd(i,n);

于是本质不同的方案数$L=\frac{1}{|G|}\sum{n^{gcd(i,n)}}$

但是$n\leq 1000000000$ 且有T组询问$T\leq 3500$

我们暴力显然是过不了的 考虑一番特殊性质 设$d=gcd(i,n)$那么显然有d|n d一定是n的因数我们知道n的因数的数量级有$\sqrt{n}$

所以我们要是可以先办法对于$\sqrt{n}$这么多个因数各自算出数量显然也是可以得到答案的。

那么 现在存在一个子问题 $\sum_{i=1}^{n}{gcd(i,n)}$ 这个东西怎么求.

这是一个非常经典的问题了,这等价于 $\sum_{d|n}\sum_{i=1}^{\frac{n}{d}}{d\cdot [gcd(i,\frac{n}{d})=1]}$

好像推不下去了 其实这个时候该反演了...我们莫比乌斯反演一下

$\sum_{k|n}\mu(k)\sum_{d|\frac{n}{k}}\frac{n}{k}$

我也无能为力了 推到死胡同了...自闭。

那么我们从另一个方面再继续推 $\sum_{d|n}\sum_{i=1}^{\frac{n}{d}}{d\cdot [gcd(i,\frac{n}{d})=1]}$

我们发现后面那个东西其实是欧拉函数 那么上式=$\sum_{d|n}d\cdot \phi(\frac{n}{d})$

这里我们暴力枚举d 再暴力算$\phi(\frac{n}{d})$肯定会T

不妨将n质因数分解了然后 接爆搜因数 这样计算欧拉函数会快很多很多 复杂度sqrt(n)+1000左右不算很高.

当然 还有一种异常靠谱的方法 这里给出[blog链接](https://www.cnblogs.com/zhchoutai/p/8450361.html) 不太懂这种方法.

回归到原题上求: $L=\frac{1}{|n|}\sum{n^{gcd(i,n)}}$ 其实就就是 d变成了 $d^{n-1}$罢了 (爆搜可行..

posted @ 2020-02-06 22:26  chdy  阅读(416)  评论(0编辑  收藏  举报