【深度学习系列】垃圾邮件处理实战(二)

PaddlePaddle垃圾邮件处理实战(二)

前文回顾

  在上篇文章中我们讲了如何用支持向量机对垃圾邮件进行分类,auc为73.3%,本篇讲继续讲如何用PaddlePaddle实现邮件分类,将深度学习方法运用到文本分类中。

构建网络模型

  用PaddlePaddle来构建网络模型其实很简单,首先得明确paddlepaddle的输入数据的格式要求,知道如何构建网络模型,以及如何训练。关于输入数据的预处理等可以参考我之前写的这篇文章【深度学习系列】PaddlePaddle之数据预处理。首先我们先采用一个浅层的神经网络来进行训练。

具体步骤

  • 读取数据
  • 划分训练集和验证集
  • 定义网络结构
  • 打印训练日志
  • 可视化训练结果

读取数据

  在PaddlePaddle中,我们需要创建一个reador来读取数据,在上篇文章中,我们已经对原始数据处理好了,正负样本分别为ham.txt和spam.txxt,这里我们只需要加载数据即可。
代码实现:

# 加载数据
def loadfile():
   # 加载正样本
   fopen = open('ham.txt','r')
   pos = []
   for line in fopen:
       pos.append(line)
       
   #加载负样本
   fopen = open('spam.txt','r')
   neg = []
   for line in fopen:
       neg.append(line)
       
   combined=np.concatenate((pos, neg))
   # 创建label
   y = np.concatenate((np.ones(len(pos),dtype=int), np.zeros(len(neg),dtype=int)))
   return combined,y

# 创建paddlepaddle读取数据的reader 
def reader_creator(dataset,label):
    def reader():
        for i in xrange(len(dataset)):
                yield dataset[i,:],int(label[i])
    return reader

创建词语索引:

#创建词语字典,并返回每个词语的索引,词向量,以及每个句子所对应的词语索引
def create_dictionaries(model=None,
                        combined=None):
    if (combined is not None) and (model is not None):
        gensim_dict = Dictionary()
        gensim_dict.doc2bow(model.wv.vocab.keys(),
                            allow_update=True)
        w2indx = {v: k+1 for k, v in gensim_dict.items()}#所有频数超过10的词语的索引
        w2vec = {word: model[word] for word in w2indx.keys()}#所有频数超过10的词语的词向量

        def parse_dataset(combined):
            ''' Words become integers
            '''
            data=[]
            for sentence in combined:
                new_txt = []
                sentences = sentence.split(' ')
                for word in sentences:
		    try:
		        word = unicode(word, errors='ignore')
                        new_txt.append(w2indx[word])
                    except:
                        new_txt.append(0)
                data.append(new_txt)
            return data
        combined=parse_dataset(combined)
        combined= sequence.pad_sequences(combined, maxlen=maxlen)#每个句子所含词语对应的索引,所以句子中含有频数小于10的词语,索引为0
        return w2indx, w2vec,combined
    else:
        print 'No data provided...'

划分训练集和验证集

  这里我们采取sklearn的train_test_split函数对数据集进行划分,训练集和验证集的比例为4:1。
代码实现:

# 导入word2vec模型
def word2vec_train(combined):
    model = Word2Vec.load('lstm_data/model/Word2vec_model.pkl')
    index_dict, word_vectors,combined = create_dictionaries(model=model,combined=combined)
    return   index_dict, word_vectors,combined

# 获取训练集、验证集
def get_data(index_dict,word_vectors,combined,y):
    n_symbols = len(index_dict) + 1  # 所有单词的索引数,频数小于10的词语索引为0,所以加1
    embedding_weights = np.zeros((n_symbols, vocab_dim))#索引为0的词语,词向量全为0
    for word, index in index_dict.items():#从索引为1的词语开始,对每个词语对应其词向量
        embedding_weights[index, :] = word_vectors[word]
    x_train, x_val, y_train, y_val = train_test_split(combined, y, test_size=0.2)
    print x_train.shape,y_train.shape
    return n_symbols,embedding_weights,x_train,y_train,x_val,y_val

定义网络结构

class NeuralNetwork(object):
    def __init__(self,X_train,Y_train,X_val,Y_val,vocab_dim,n_symbols,num_classes=2):
        paddle.init(use_gpu = with_gpu,trainer_count=1)

        self.X_train = X_train
        self.Y_train = Y_train
        self.X_val = X_val
        self.Y_val = Y_val
	    self.vocab_dim = vocab_dim
	    self.n_symbols = n_symbols
        self.num_classes=num_classes

    # 定义网络模型
    def get_network(self):
        # 分类模型
        x = paddle.layer.data(name='x', type=paddle.data_type.dense_vector(self.vocab_dim))
        y = paddle.layer.data(name='y', type=paddle.data_type.integer_value(self.num_classes))
        fc1 = paddle.layer.fc(input = x,size = 1280,act = paddle.activation.Linear())
        fc2 = paddle.layer.fc(input = fc1,size = 640,act = paddle.activation.Relu())
        prob = paddle.layer.fc(input = fc2,size = self.num_classes,act = paddle.activation.Softmax())
        predict = paddle.layer.mse_cost(input = prob,label = y)
    return predict

    # 定义训练器
    def get_trainer(self):

        cost = self.get_network()

        #获取参数
        parameters = paddle.parameters.create(cost)

        #定义优化方法
        optimizer0 = paddle.optimizer.Momentum(
                                momentum=0.9,
                                regularization=paddle.optimizer.L2Regularization(rate=0.0002 * 128),
                                learning_rate=0.01 / 128.0,
                                learning_rate_decay_a=0.01,
                                learning_rate_decay_b=50000 * 100)
	
	optimizer1 = paddle.optimizer.Momentum(
                                momentum=0.9,
                                regularization=paddle.optimizer.L2Regularization(rate=0.0002 * 128),
                                learning_rate=0.001,
                                learning_rate_schedule = "pass_manual",
                                learning_rate_args = "1:1.0, 8:0.1, 13:0.01")

	optimizer = paddle.optimizer.Adam(
        			learning_rate=2e-3,
        			regularization=paddle.optimizer.L2Regularization(rate=8e-4),
        			model_average=paddle.optimizer.ModelAverage(average_window=0.5))



        # 创建训练器
        trainer = paddle.trainer.SGD(
                cost=cost, parameters=parameters, update_equation=optimizer)
        return parameters,trainer


    # 开始训练
    def start_trainer(self,X_train,Y_train,X_val,Y_val):
        parameters,trainer = self.get_trainer()

        result_lists = []
        def event_handler(event):
            if isinstance(event, paddle.event.EndIteration):
                if event.batch_id % 100 == 0:
                    print "\nPass %d, Batch %d, Cost %f, %s" % (
                        event.pass_id, event.batch_id, event.cost, event.metrics)
            if isinstance(event, paddle.event.EndPass):
                    # 保存训练好的参数
                with open('params_pass_%d.tar' % event.pass_id, 'w') as f:
                    parameters.to_tar(f)
                # feeding = ['x','y']
                result = trainer.test(
                        reader=val_reader)
                            # feeding=feeding)
                print "\nTest with Pass %d, %s" % (event.pass_id, result.metrics)

                result_lists.append((event.pass_id, result.cost,
                        result.metrics['classification_error_evaluator']))

        # 开始训练
        train_reader = paddle.batch(paddle.reader.shuffle(
                reader_creator(X_train,Y_train),buf_size=20),
                batch_size=4)

        val_reader = paddle.batch(paddle.reader.shuffle(
                reader_creator(X_val,Y_val),buf_size=20),
                batch_size=4)

        trainer.train(reader=train_reader,num_passes=5,event_handler=event_handler)

	#找到训练误差最小的一次结果
	best = sorted(result_lists, key=lambda list: float(list[1]))[0]
        print 'Best pass is %s, testing Avgcost is %s' % (best[0], best[1])
        print 'The classification accuracy is %.2f%%' % (100 - float(best[2]) * 100)

训练模型

#训练模型,并保存
def train():
    print 'Loading Data...'
    combined,y=loadfile()
    print len(combined),len(y)
    print 'Tokenising...'
    combined = tokenizer(combined)
    print 'Training a Word2vec model...'
    index_dict, word_vectors,combined=word2vec_train(combined)
    print 'Setting up Arrays for Keras Embedding Layer...'
    n_symbols,embedding_weights,x_train,y_train,x_val,y_val=get_data(index_dict, word_vectors,combined,y)
    print x_train.shape,y_train.shape
    network = NeuralNetwork(X_train = x_train,Y_train = y_train,X_val = x_val, Y_val = y_val,vocab_dim = vocab_dim,n_symbols = n_symbols,num_classes = 2)
    network.start_trainer(x_train,y_train,x_val,y_val)

if __name__=='__main__':
    train()

性能测试

  设置迭代5次,输出结果如下:

Using TensorFlow backend.
Loading Data...
63000 63000
Tokenising...
Building prefix dict from the default dictionary ...
[DEBUG 2018-01-29 00:29:19,184 __init__.py:111] Building prefix dict from the default dictionary ...
Loading model from cache /tmp/jieba.cache
[DEBUG 2018-01-29 00:29:19,185 __init__.py:131] Loading model from cache /tmp/jieba.cache
Loading model cost 0.253 seconds.
[DEBUG 2018-01-29 00:29:19,437 __init__.py:163] Loading model cost 0.253 seconds.
Prefix dict has been built succesfully.
[DEBUG 2018-01-29 00:29:19,437 __init__.py:164] Prefix dict has been built succesfully.
I0128 12:29:17.325337 16772 GradientMachine.cpp:101] Init parameters done.
Pass 0, Batch 0, Cost 0.519137, {'classification_error_evaluator': 0.25}
Pass 0, Batch 100, Cost 0.410812, {'classification_error_evaluator': 0}
Pass 0, Batch 200, Cost 0.486661, {'classification_error_evaluator': 0.25}
···
Pass 4, Batch 12200, Cost 0.508126, {'classification_error_evaluator': 0.25}
Pass 4, Batch 12300, Cost 0.312028, {'classification_error_evaluator': 0.25}
Pass 4, Batch 12400, Cost 0.259026, {'classification_error_evaluator': 0.0}
Pass 4, Batch 12500, Cost 0.177996, {'classification_error_evaluator': 0.25}
Test with Pass 4, {'classification_error_evaluator': 0.15238096714019775}
Best pass is 4, testing Avgcost is 0.716855627394
The classification accuracy is 84.76%

  由此可以看到,仅迭代5次paddlepaddle的结果即可达到84.76%,如果增加迭代次数,可以达到更高的准确率。

总结

  本篇文章讲了如何用paddlepaddle来进行垃圾邮件分类,采取一个简单的浅层神经网络来训练模型,迭代5次的准确率即为84.76%。在实际操作过程中,大家可以增加迭代次数,提高模型的精度,也可采取一些其他的方法,譬如文本CNN模型,LSTM模型来训练以获得更好的效果。

本文首发于景略集智,并由景略集智制作成“PaddlePaddle调戏邮件诈骗犯”系列视频。如果有不懂的,欢迎在评论区中提问~

作者:Charlotte77

出处:http://www.cnblogs.com/charlotte77/

本文以学习、研究和分享为主,如需转载,请联系本人,标明作者和出处,非商业用途!

关注【Charlotte数据挖掘】回复 '资料' 获取深度学习优质资料

posted @ 2018-06-06 09:56  Charlotte77  阅读(3660)  评论(6编辑  收藏  举报