Hive HBase 整合
hive hbase整合,要求比较多,1.hive的得是0.6.0(当前最新的版本) 
2.hive本身要求hadoop的最高版本是hadoop-0.20.2 
3.要求hbase的版本是0.20.3,其他版本需要重新编译hive_hbase-handler 
但是新版的hbase(0.90)变动特别大,根本无法从编译。这点比较恶心,hbase目前升级比较快,当前是0.90(从0.20.6直接跳到0.89),至于为什么这样跳跃,参考官方的解释http://wiki.apache.org/hadoop/Hbase/HBaseVersions 
1)启动Hbase, 
要求hbase-0.20.3,zookeeper-3.2.2 
如果使用的不是hbase-0.20.3需要重新编译hive_hbase-handler.jar 
2)单节点HBase的连接 
./bin/hive -hiveconf hbase.master=master:60000 
3)集群HBase的连接 
1.启动zookeeper 
2.启动hbase 
3.启动hive,添加zookeeper的支持
- ./bin/hive -hiveconf hbase.zookeeper.quorum= master,slave-A,slave-B
 
//所有的zookeeper节点 
二、插入数据 
启动
- ./bin/hive --auxpath /data/soft/hive/lib/hive_hbase-handler.jar,/data/soft/hive/lib/hbase-0.20.3.jar,/data/soft/hive/lib/zookeeper-3.2.2.jar -hiveconf hbase.zookeeper.quorum=slave-001,slave-002,slave-003
 
hive 
1.创建hbase识别的数据库
- CREATE TABLE hbase_table_1(key int, value string)
 - STORED BY 'org.apache.hadoop.hive.hbase.HBaseStorageHandler'
 - WITH SERDEPROPERTIES ("hbase.columns.mapping" = ":key,cf1:val")
 - TBLPROPERTIES ("hbase.table.name" = "xyz");
 
hbase.table.name 定义在hbase的table名称 
hbase.columns.mapping 定义在hbase的列族 
2.使用sql导入数据 
i.预先准备数据 
a)新建hive的数据表
- CREATE TABLE pokes (foo INT, bar STRING);
 
b)批量插入数据
- hive> LOAD DATA LOCAL INPATH './examples/files/kv1.txt' OVERWRITE INTO TABLE pokes;
 
这个文件位于hive的安装目录下,examples/files/kv1.txt 
- ii.使用sql导入hbase_table_1
 
- INSERT OVERWRITE TABLE hbase_table_1 SELECT * FROM pokes WHERE foo=86;
 
注意,默认的启动会报错的 
FAILED: Execution Error, return code 2 from org.apache.hadoop.hive.ql.exec.ExecDriver 
启动的时候要添加
- -auxpath /data/soft/hive/lib/hive_hbase-handler.jar,/data/soft/hive/lib/hbase-0.20.3.jar,/data/soft/hive/lib/zookeeper-3.2.2.jar
 
3查看数据
- hive> select * from hbase_table_1;
 
会显示刚刚插入的数据 
86      val_86 
hbase 
1.登录hbase
- [root@master hbase]# ./bin/hbase shell
 
2.查看表结构
- hbase(main):001:0> describe 'xyz'
 - DESCRIPTION ENABLED
 - {NAME => 'xyz', FAMILIES => [{NAME => 'cf1', COMPRESSION => 'NONE', VE true
 - RSIONS => '3', TTL => '2147483647', BLOCKSIZE => '65536', IN_MEMORY =>
 - 'false', BLOCKCACHE => 'true'}]}
 - 1 row(s) in 0.7460 seconds
 
3.查看加载的数据
- hbase(main):002:0> scan 'xyz'
 - ROW COLUMN+CELL
 - 86 column=cf1:val, timestamp=1297690405634, value=val_86
 
                                                     
1 row(s) in 0.0540 seconds 
可以看到,在hive中添加的数据86,已经在hbase中了 
4.添加数据
- ' hbase(main):008:0> put 'xyz','100','cf1:val','www.360buy.com'
 - 0 row(s) in 0.0630 seconds
 
Hive 
参看hive中的数据
- hive> select * from hbase_table_1;
 - OK
 - 100 www.360buy.com
 - 86 val_86
 - Time taken: 8.661 seconds
 
刚刚在hbase中插入的数据,已经在hive里了 
hive访问已经存在的hbase 
使用CREATE EXTERNAL TABLE
- CREATE EXTERNAL TABLE hbase_table_2(key int, value string)
 - STORED BY 'org.apache.hadoop.hive.hbase.HBaseStorageHandler'
 - WITH SERDEPROPERTIES ("hbase.columns.mapping" = "cf1:val")
 - TBLPROPERTIES("hbase.table.name" = "some_existing_table");
 
三、多列和多列族(Multiple Columns and Families) 
1.创建数据库
- CREATE TABLE hbase_table_2(key int, value1 string, value2 int, value3 int)
 - STORED BY 'org.apache.hadoop.hive.hbase.HBaseStorageHandler'
 - WITH SERDEPROPERTIES (
 - "hbase.columns.mapping" = ":key,a:b,a:c,d:e"
 - );
 
2.插入数据
- INSERT OVERWRITE TABLE hbase_table_2 SELECT foo, bar, foo+1, foo+2
 - FROM pokes WHERE foo=98 OR foo=100;
 
这个有3个hive的列(value1和value2,value3),2个hbase的列族(a,d) 
Hive的2列(value1和value2)对应1个hbase的列族(a,在hbase的列名称b,c),hive的另外1列(value3)对应列(e)位于列族(d) 
3.登录hbase查看结构
- hbase(main):003:0> describe "hbase_table_2"
 - DESCRIPTION ENABLED
 - {NAME => 'hbase_table_2', FAMILIES => [{NAME => 'a', COMPRESSION => 'N true
 - ONE', VERSIONS => '3', TTL => '2147483647', BLOCKSIZE => '65536', IN_M
 - EMORY => 'false', BLOCKCACHE => 'true'}, {NAME => 'd', COMPRESSION =>
 - 'NONE', VERSIONS => '3', TTL => '2147483647', BLOCKSIZE => '65536', IN
 - _MEMORY => 'false', BLOCKCACHE => 'true'}]}
 - 1 row(s) in 1.0630 seconds
 
4.查看hbase的数据
- hbase(main):004:0> scan 'hbase_table_2'
 - ROW COLUMN+CELL
 - 100 column=a:b, timestamp=1297695262015, value=val_100
 - 100 column=a:c, timestamp=1297695262015, value=101
 - 100 column=d:e, timestamp=1297695262015, value=102
 - 98 column=a:b, timestamp=1297695242675, value=val_98
 - 98 column=a:c, timestamp=1297695242675, value=99
 - 98 column=d:e, timestamp=1297695242675, value=100
 - 2 row(s) in 0.0380 seconds
 
5.在hive中查看
- hive> select * from hbase_table_2;
 - OK
 - 100 val_100 101 102
 - 98 val_98 99 100
 - Time taken: 3.238 seconds  
 
posted on 2017-07-05 16:30 Charlist00 阅读(192) 评论(0) 收藏 举报
                
            
        
浙公网安备 33010602011771号