随笔分类 - 图论
摘要:名字感觉挺奇怪的。 考虑离线算法。首先答案就是用 \(n\) 减去连完边后的生成树森林边数。生成树当然就可以用 \(lct\) 求解了。我是不会告诉你这个时候我已经开始想回滚莫队了的。 考虑当我们倒序加入 \([l,r]\) 中的边时,哪些边会产生贡献。我们考虑假如我们新加入一条边,与原先的生成树形
        阅读全文
                
摘要:最大值最小的路径肯定在最小生成树上,考虑用 \(LCT\) 维护最小生成树,只需要维护长度最长的边即可实现。由于 \(LCT\) 维护最小生成树不支持删边,所以采用倒序加边的方式处理。 时间复杂度 \(O(n\log n)\)。 #include<bits/stdc++.h> #define fa(
        阅读全文
                
摘要:\(55+42+50=147,rk2\)。 T1 序列 直接上吉司机线段树,特判 \(+\ 0\) 情况即可。 我猜测时间复杂度是 \(O(n\log^2n)\)。 #include<bits/stdc++.h> #define int long long using namespace std; 
        阅读全文
                
摘要:好题,又学两个思路。 先把问题变简单一点,去掉深度限制,那么有两种做法: 经典的前驱后继转化到二维数点。 颜色相同的点按 \(dfs\) 序排序,每个点 \(+1\),相邻两点 \(lca-1\)。转化为区间求和。 第二种相对实现简单。 假如加上深度,我们可以离线问题,按深度顺序加点。 要在线的话,
        阅读全文
                
摘要:三棵树就很毒瘤了,我们一棵一棵看。 关于第一棵树的路径,经典解法就是点分治和边分治,考虑哪种更加简单。 设 \(dis1/2/3(x)\) 表示 \(x\) 在第 \(1/2/3\) 棵树中的深度(第一棵树的深度当然是点到重心或重边的距离),\(lca2/3(x,y)\) 表示在第 \(2/3\) 
        阅读全文
                
摘要:感觉长脑子了。 考虑在路线两端点的 \(lca\) 计算贡献,那么线段可以分两类: \(u\) 为 \(v\) 祖先。 \(u,v\) 互不为祖先。 设 \(dp_i\) 表示只考虑 \(i\) 子树内的路线时的答案。 引理:若插入一条以 \(i\) 为 \(lca\) 的路径会使以 \(i\) 的
        阅读全文
                
摘要:绝对好题。 考虑每个点插入的次数必须为 \(\log n\) 级别的,而且还要再小。考虑重链剖分。当然,首先要询问出所有点的深度,并且按深度从小到大依次插入。 每次选择当前重链的链尾,若链尾深度为 \(dep\),询问返回值为 \(dp\),目标父亲深度为 \(d\),则在这条重链上深度为 \(d-
        阅读全文
                
摘要:首先 \(S(u)\) 显然是 \(u\) 的子树。 假如 \(u\) 是定点,问题转化为区间求平方和,十分简单。 于是我们用线段树维护区间平方和,支持区间加,然后离线问题,在 \(u\) 的位置处理即可。线段树从 \(fa\) 转移到 \(u\) 是极度简单的。 时间复杂度 \(O(n\log n
        阅读全文
                
摘要:第一道函数交互 \(+\ luogu\) 最劣解,这不得发篇博客鼓励一下。 引理 \(1\):若 \(p_{i,j}>0,p_{i,k}>0,p_{j,k}=0(i\ne j\ne k)\),则不合法。 正确性显然。 引理 \(2\):若 \(p_{i,j}=3\),则不合法。 证明:设三条路径为 
        阅读全文
                
摘要:相当套路而巧妙的构造。 假如我们对于横纵坐标构造二分图,然后用如下方法连边: 对于点 \((x,y)\),连接 \(x,y\)。 那么对于一个有 \(num_x\) 个横坐标点和 \(num_y\) 个纵坐标点的连通块,它所产生的贡献就是 \(num_x\times num_y\)。 这玩意儿需要联
        阅读全文
                
摘要:\(xor\) 最大值想到线性基,路径想到 \(lca\) 和树链剖分,由于没有修改用 \(lca\) 就可以。先用处理 \(fa\) 数组的方式处理倍增线性基(自然是得用线性基合并的),在求 \(lca\) 时把所有线性基全部合到一块儿就行。 考虑到本题实际上核心在于让路径上的线性基数量 \(\l
        阅读全文
                
摘要:考虑不联通的情况。图不好做,就造一棵生成树出来,由于是无向图,所以只有树边和返祖边。 发现在一条树边断开后,生成树会分成两个连通块,由覆盖这条树边的返祖边链接,只有这些返祖边也全部断开,原图才会不联通。 想到异或的优良性质。我们给所有返祖边在 \([0,2^{63})\) 中随机一个值作为这条边的权
        阅读全文
                
摘要:模版题的升级了。 使用二分图经典判定方法(一个点拆成两个点 \(x,x+n\),连边 \((x,y)\) 就是连接 \((x,y+n),(x+n,y)\),那么是否是二分图就等价于判断 \(x,x+n\) 是否都不在一个集合内),预处理出每个操作的 \(e_i\) 下一次出现的位置 \(nx_i\)
        阅读全文
                
摘要:好题好题。 难点在建图,因为图的边数将会决定最小生成树的时间复杂度。我们肯定希望能够只建 \(O(n)\) 级别的边,这样时间复杂度就可以做到 \(O(n\log n)\)。 观察到当 \(i,j,k\) 三个区间能够互相连边时(这里假设 \(a_i<a_j<a_k\)),我们绝对不会连 \((i,
        阅读全文
                

浙公网安备 33010602011771号