随笔分类 -  题解

摘要:加边删边 \(LCT\),标记下放同 \(luogu\) 线段树 \(2\) 一题。 时间复杂度 \(O(n\log n)\),第一次交的时候我维护 \(sum\) 不维护 \(sz\ WA\) 完了。 #include<bits/stdc++.h> #define int long long #d 阅读全文
posted @ 2025-01-08 10:57 长安一片月_22 阅读(19) 评论(0) 推荐(0)
摘要:一眼树链剖分或 \(LCT\),由于在学后者所以就写了。 取反操作相当于把 \(min,max\) 取反后交换,所以要维护 \(min,max,val\)。 时间复杂度 \(O(m\log n)\)。 #include<bits/stdc++.h> #define fa(x) lct[x].fa # 阅读全文
posted @ 2025-01-06 21:19 长安一片月_22 阅读(27) 评论(0) 推荐(0)
摘要:似乎所有的线段树分治题都能被 \(LCT\) 平替掉? 一眼动态树,直接 \(LCT\)。 Connect x y 操作用 \(link(x,y)\) 实现,Destroy x y 操作用 \(cut(x,y)\) 实现,Query x y 操作用 \([find(x)=find(y)]\) 实现。 阅读全文
posted @ 2025-01-06 17:40 长安一片月_22 阅读(17) 评论(0) 推荐(0)
摘要:啊啊啊啊啊啊啊啊啊啊啊我终于改完啦啊啊啊啊啊啊啊。 因为没有在最开始的时候将所有点设置为已经重构的,所以直接 \(R15-R70\) 间卡了两三天。 似乎也是我第一次大规模使用指针了。 这道题假如只有一次询问,就是一道简单淀粉质,直接在根节点建立平衡树,记录 \(r_x-dis(x,rt)\),然后 阅读全文
posted @ 2025-01-05 10:12 长安一片月_22 阅读(19) 评论(0) 推荐(0)
摘要:妙不可言!妙绝人寰! 单点修,区间查,包是线段树的。考虑如何比较两节点大小。 考虑二叉搜索树,我们只要再给每个节点附一个权值,就可以比较了! 注意力相当惊人的注意到,假如给每个点一个区间 \([l_x,r_x]\),左右儿子分别表示为 \([l_x,\lfloor\frac{l_x+r_x}2\rf 阅读全文
posted @ 2024-12-30 09:36 长安一片月_22 阅读(13) 评论(0) 推荐(0)
摘要:突然想买一瓶,然后喝上几口。(不要命的想法) 动态全局 \(k\) 大想到权值线段树上二分。 由于要存储二维的点,所以得用到我们神通广大的 \(KDT\) 了。 那么想到权值线段树套 \(KDT\) 这种算法了。 笔者用的是二进制分组的写法,插入单次均摊时间复杂度是 \(O(\log^3n)\),查 阅读全文
posted @ 2024-12-29 14:58 长安一片月_22 阅读(19) 评论(0) 推荐(0)
摘要:\(55+42+50=147,rk2\)。 T1 序列 直接上吉司机线段树,特判 \(+\ 0\) 情况即可。 我猜测时间复杂度是 \(O(n\log^2n)\)。 #include<bits/stdc++.h> #define int long long using namespace std; 阅读全文
posted @ 2024-12-26 16:30 长安一片月_22 阅读(12) 评论(0) 推荐(0)
摘要:好题,又学两个思路。 先把问题变简单一点,去掉深度限制,那么有两种做法: 经典的前驱后继转化到二维数点。 颜色相同的点按 \(dfs\) 序排序,每个点 \(+1\),相邻两点 \(lca-1\)。转化为区间求和。 第二种相对实现简单。 假如加上深度,我们可以离线问题,按深度顺序加点。 要在线的话, 阅读全文
posted @ 2024-12-25 12:00 长安一片月_22 阅读(19) 评论(0) 推荐(0)
摘要:学到新思路了:求解 \(k\) 大值时,可以将所有元素放一块一起跑。 考虑到 \(n,q\) 奇小无匹,我们便可以制造一个 \(O(qn\log V)\) 的代码。 那么对于我们不想在时间复杂度中出现的 \(m\),我们直接把他扔进可持久化 \(Trie\) 中销赃。 再根据刚才那个思路,将 \([ 阅读全文
posted @ 2024-12-24 17:38 长安一片月_22 阅读(18) 评论(0) 推荐(0)
摘要:相当好的题目,虽然和我前几天出的题重了qwq。 \(lmx\) 是我们的红太阳,没有他我们就会死!!! 暴力枚举一个端点,然后用可持久化 \(01\ Trie\) 或者离线 \(Trie\)(当然这题用不了,但不强制在线的话是可以的)得到答案。时间复杂度 \(O(nm\log n)\),过不了,考虑 阅读全文
posted @ 2024-12-24 15:19 长安一片月_22 阅读(27) 评论(0) 推荐(0)
摘要:三棵树就很毒瘤了,我们一棵一棵看。 关于第一棵树的路径,经典解法就是点分治和边分治,考虑哪种更加简单。 设 \(dis1/2/3(x)\) 表示 \(x\) 在第 \(1/2/3\) 棵树中的深度(第一棵树的深度当然是点到重心或重边的距离),\(lca2/3(x,y)\) 表示在第 \(2/3\) 阅读全文
posted @ 2024-12-24 07:46 长安一片月_22 阅读(15) 评论(0) 推荐(0)
摘要:首先发现 \(p_x\times dis(x,y)+q_x\) 异常像是能斜率优化的样子,那先把求 \(f_x\) 的式子写出来(下设 \(d_x\) 表示 \(x\) 到根的距离): \[f_x=\min_{lca(x,y)=y,y\ne x}(p_x\times(d_x-d_y)+q_x+f_y 阅读全文
posted @ 2024-12-23 08:59 长安一片月_22 阅读(19) 评论(0) 推荐(0)
摘要:首先只要得到 \(x=0\) 时的答案,就可以 \(AC\) 本题。这是很重要的。 考虑由于不能有重复经过的边,所以两路径交点数量 \(\le 1\)。 容易想到设 \(dp_u\) 表示以 \(u\) 为端点的链中的贡献最大值。考虑换根 \(dp\),所以先设它只表示它子树内的部分。 当交点数量 阅读全文
posted @ 2024-12-21 09:50 长安一片月_22 阅读(19) 评论(0) 推荐(0)
摘要:感觉长脑子了。 考虑在路线两端点的 \(lca\) 计算贡献,那么线段可以分两类: \(u\) 为 \(v\) 祖先。 \(u,v\) 互不为祖先。 设 \(dp_i\) 表示只考虑 \(i\) 子树内的路线时的答案。 引理:若插入一条以 \(i\) 为 \(lca\) 的路径会使以 \(i\) 的 阅读全文
posted @ 2024-12-20 22:04 长安一片月_22 阅读(19) 评论(0) 推荐(0)
摘要:随机化好题,但是不会证。 考虑把树看成一条链,链的每个点上缀了一棵树。 那么先随机出两个点 \(x,y\)(实际上随机一个点,另一个点固定似乎更好?),然后对于当前这棵树上的任意点 \(z\),都让他进行一次询问,答案为 \(o=Q(x,y,z)\)。 那么当 \(o=z\) 时,显然 \(z\) 阅读全文
posted @ 2024-12-20 15:56 长安一片月_22 阅读(21) 评论(0) 推荐(0)
摘要:绝对好题。 考虑每个点插入的次数必须为 \(\log n\) 级别的,而且还要再小。考虑重链剖分。当然,首先要询问出所有点的深度,并且按深度从小到大依次插入。 每次选择当前重链的链尾,若链尾深度为 \(dep\),询问返回值为 \(dp\),目标父亲深度为 \(d\),则在这条重链上深度为 \(d- 阅读全文
posted @ 2024-12-20 15:41 长安一片月_22 阅读(13) 评论(0) 推荐(0)
摘要:首先 \(S(u)\) 显然是 \(u\) 的子树。 假如 \(u\) 是定点,问题转化为区间求平方和,十分简单。 于是我们用线段树维护区间平方和,支持区间加,然后离线问题,在 \(u\) 的位置处理即可。线段树从 \(fa\) 转移到 \(u\) 是极度简单的。 时间复杂度 \(O(n\log n 阅读全文
posted @ 2024-12-20 11:01 长安一片月_22 阅读(13) 评论(0) 推荐(0)
摘要:第一道函数交互 \(+\ luogu\) 最劣解,这不得发篇博客鼓励一下。 引理 \(1\):若 \(p_{i,j}>0,p_{i,k}>0,p_{j,k}=0(i\ne j\ne k)\),则不合法。 正确性显然。 引理 \(2\):若 \(p_{i,j}=3\),则不合法。 证明:设三条路径为 阅读全文
posted @ 2024-12-20 08:53 长安一片月_22 阅读(15) 评论(0) 推荐(0)
摘要:明显有森林的趋势,但是很有可能会出现环,相当于最后图的形状一定是树和基环树森林。 考虑到环内所有点一选俱选,一没俱没,所以可以直接缩成一个点。 然后就是最基础的树上背包 \(dp\),和金明差不多。 时间复杂度 \(O(nm^2)\)。 #include<bits/stdc++.h> using n 阅读全文
posted @ 2024-12-19 18:19 长安一片月_22 阅读(9) 评论(0) 推荐(0)
摘要:考虑当没有强制在线时,容易想到一个点 \(i\) 所影响的区间 \([l,r]\) 满足 \(pr_i<l\le i,i\le r<nx_i\)。显然可以转化为矩阵修改,单点求 \(\max\) 的问题。那扫描线 \(+\ set\) 轻松拿下。 强制在线就把线段树换成主席树就可以了。注意这里不能下 阅读全文
posted @ 2024-12-19 16:40 长安一片月_22 阅读(18) 评论(0) 推荐(0)