8种常见数据结构及其Javascript实现
1. Stack(栈)
Stack的特点是后进先出(last in first out)。生活中常见的Stack的例子比如一摞书,你最后放上去的那本你之后会最先拿走;又比如浏览器的访问历史,当点击返回按钮,最后访问的网站最先从历史记录中弹出。Stack一般具备以下方法:
-
push : 将一个元素推入栈顶
-
pop : 移除栈顶元素,并返回被移除的元素
-
peek : 返回栈顶元素
-
length : 返回栈中元素的个数
Javascript的Array天生具备了Stack的特性,但我们也可以从头实现一个 Stack类:
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
|
function Stack() {this.count = 0; this.storage = {}; this.push = function (value) { this.storage[this.count] = value; this.count++; } this.pop = function () { if (this.count === 0) { return undefined; } this.count--; var result = this.storage[this.count]; delete this.storage[this.count]; return result; } this.peek = function () { return this.storage[this.count - 1]; } this.size = function () { return this.count; }} |
2. Queue(队列)
Queue和Stack有一些类似,不同的是Stack是先进后出,而Queue是先进先出。Queue在生活中的例子比如排队上公交,排在第一个的总是最先上车;又比如打印机的打印队列,排在前面的最先打印。Queue一般具有以下常见方法:
-
enqueue : 入列,向队列尾部增加一个元素
-
dequeue : 出列,移除队列头部的一个元素并返回被移除的元素
-
front : 获取队列的第一个元素
-
isEmpty : 判断队列是否为空
-
size : 获取队列中元素的个数
Javascript中的Array已经具备了Queue的一些特性,所以我们可以借助Array实现一个Queue类型:
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
|
function Queue() { var collection = []; this.print = function () { console.log(collection); } this.enqueue = function (element) { collection.push(element); } this.dequeue = function () { return collection.shift(); } this.front = function () { return collection[0]; } this.isEmpty = function () { return collection.length === 0; } this.size = function () { return collection.length; }} |
Priority Queue(优先队列)
Queue还有个升级版本,给每个元素赋予优先级,优先级高的元素入列时将排到低优先级元素之前。区别主要是enqueue方法的实现:
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
|
function PriorityQueue() { ... this.enqueue = function (element) { if (this.isEmpty()) { collection.push(element); } else { var added = false; for (var i = 0; i < collection.length; i++) { if (element[1] < collection[i][1]) { collection.splice(i, 0, element); added = true; break; } } if (!added) { collection.push(element); } } }} |
测试一下:
|
1
2
3
4
5
6
|
var pQ = new PriorityQueue();pQ.enqueue(['gannicus', 3]);pQ.enqueue(['spartacus', 1]);pQ.enqueue(['crixus', 2]);pQ.enqueue(['oenomaus', 4]);pQ.print(); |
结果:
|
1
2
3
4
5
6
|
[ [ 'spartacus', 1 ], [ 'crixus', 2 ], [ 'gannicus', 3 ], [ 'oenomaus', 4 ]] |
3. Linked List(链表)
顾名思义,链表是一种链式数据结构,链上的每个节点包含两种信息:节点本身的数据和指向下一个节点的指针。链表和传统的数组都是线性的数据结构,存储的都是一个序列的数据,但也有很多区别,如下表:
| 比较维度 | 数组 | 链表 |
| 内存分配 | 静态内存分配,编译时分配且连续 | 动态内存分配,运行时分配且不连续 |
| 元素获取 | 通过Index获取,速度较快 | 通过遍历顺序访问,速度较慢 |
| 添加删除元素 | 因为内存位置连续且固定,速度较慢 | 因为内存分配灵活,只有一个开销步骤,速度更快 |
| 空间结构 | 可以是一维或者多维数组 | 可以是单向、双向或者循环链表 |
一个单向链表通常具有以下方法:
-
size :返回链表中节点的个数
-
head :返回链表中的头部元素
-
add :向链表尾部增加一个节点
-
remove :删除某个节点
-
indexOf :返回某个节点的index
-
elementAt :返回某个index处的节点
-
addAt :在某个index处插入一个节点
-
removeAt :删除某个index处的节点
单向链表的Javascript实现:
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
|
/** * 链表中的节点 */function Node(element) { // 节点中的数据 this.element = element; // 指向下一个节点的指针 this.next = null;}function LinkedList() { var length = 0; var head = null; this.size = function() { return length; } this.head = function() { return head; } this.add = function(element) { var node = new Node(element); if (head == null) { head = node; } else { var currentNode = head; while (currentNode.next) { currentNode = currentNode.next; } currentNode.next = node; } length++; } this.remove = function(element) { var currentNode = head; var previousNode; if (currentNode.element === element) { head = currentNode.next; } else { while (currentNode.element !== element) { previousNode = currentNode; currentNode = currentNode.next; } previousNode.next = currentNode.next; } length--; } this.isEmpty = function() { return length === 0; } this.indexOf = function(element) { var currentNode = head; var index = -1; while (currentNode) { index++; if (currentNode.element === element) { return index; } currentNode = currentNode.next; } return -1; } this.elementAt = function(index) { var currentNode = head; var count = 0; while (count < index) { count++; currentNode = currentNode.next; } return currentNode.element; } this.addAt = function(index, element) { var node = new Node(element); var currentNode = head; var previousNode; var currentIndex = 0; if (index > length) { return false; } if (index === 0) { node.next = currentNode; head = node; } else { while (currentIndex < index) { currentIndex++; previousNode = currentNode; currentNode = currentNode.next; } node.next = currentNode; previousNode.next = node; } length++; } this.removeAt = function(index) { var currentNode = head; var previousNode; var currentIndex = 0; if (index < 0 || index >= length) { return null; } if (index === 0) { head = currentIndex.next; } else { while (currentIndex < index) { currentIndex++; previousNode = currentNode; currentNode = currentNode.next; } previousNode.next = currentNode.next; } length--; return currentNode.element; }} |
4. Set(集合)
集合是数学中的一个基本概念,表示具有某种特性的对象汇总成的集体。在ES6中也引入了集合类型Set,Set和Array有一定程度的相似,不同的是Set中不允许出现重复的元素而且是无序的。一个典型的Set应该具有以下方法:
-
values : 返回集合中的所有元素
-
size : 返回集合中元素的个数
-
has : 判断集合中是否存在某个元素
-
add : 向集合中添加元素
-
remove : 从集合中移除某个元素
-
union : 返回两个集合的并集
-
intersection : 返回两个集合的交集
-
difference : 返回两个集合的差集
-
subset : 判断一个集合是否为另一个集合的子集
使用Javascript可以将Set进行如下实现,为了区别于ES6中的Set命名为MySet:
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
|
function MySet() { var collection = []; this.has = function(element) { return (collection.indexOf(element) !== -1); } this.values = function() { return collection; } this.size = function() { return collection.length; } this.add = function(element) { if (!this.has(element)) { collection.push(element); return true; } return false; } this.remove = function(element) { if (this.has(element)) { index = collection.indexOf(element); collection.splice(index, 1); return true; } return false; } this.union = function(otherSet) { var unionSet = new MySet(); var firstSet = this.values(); var secondSet = otherSet.values(); firstSet.forEach(function(e) { unionSet.add(e); }); secondSet.forEach(function(e) { unionSet.add(e); }); return unionSet; } this.intersection = function(otherSet) { var intersectionSet = new MySet(); var firstSet = this.values(); firstSet.forEach(function(e) { if (otherSet.has(e)) { intersectionSet.add(e); } }); return intersectionSet; } this.difference = function(otherSet) { var differenceSet = new MySet(); var firstSet = this.values(); firstSet.forEach(function(e) { if (!otherSet.has(e)) { differenceSet.add(e); } }); return differenceSet; } this.subset = function(otherSet) { var firstSet = this.values(); return firstSet.every(function(value) { return otherSet.has(value); }); }} |
5. Hash Table(哈希表/散列表)
Hash Table是一种用于存储键值对(key value pair)的数据结构,因为Hash Table根据key查询value的速度很快,所以它常用于实现Map、Dictinary、Object等数据结构。如上图所示,Hash Table内部使用一个hash函数将传入的键转换成一串数字,而这串数字将作为键值对实际的key,通过这个key查询对应的value非常快,时间复杂度将达到O(1)。Hash函数要求相同输入对应的输出必须相等,而不同输入对应的输出必须不等,相当于对每对数据打上唯一的指纹。一个Hash Table通常具有下列方法:
-
add : 增加一组键值对
-
remove : 删除一组键值对
-
lookup : 查找一个键对应的值
一个简易版本的Hash Table的Javascript实现:
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
|
function hash(string, max) { var hash = 0; for (var i = 0; i < string.length; i++) { hash += string.charCodeAt(i); } return hash % max;}function HashTable() { let storage = []; const storageLimit = 4; this.add = function (key, value) { var index = hash(key, storageLimit); if (storage[index] === undefined) { storage[index] = [ [key, value] ]; } else { var inserted = false; for (var i = 0; i < storage[index].length; i++) { if (storage[index][i][0] === key) { storage[index][i][1] = value; inserted = true; } } if (inserted === false) { storage[index].push([key, value]); } } } this.remove = function (key) { var index = hash(key, storageLimit); if (storage[index].length === 1 && storage[index][0][0] === key) { delete storage[index]; } else { for (var i = 0; i < storage[index]; i++) { if (storage[index][i][0] === key) { delete storage[index][i]; } } } } this.lookup = function (key) { var index = hash(key, storageLimit); if (storage[index] === undefined) { return undefined; } else { for (var i = 0; i < storage[index].length; i++) { if (storage[index][i][0] === key) { return storage[index][i][1]; } } } }} |
6. Tree(树)
顾名思义,Tree的数据结构和自然界中的树极其相似,有根、树枝、叶子,如上图所示。Tree是一种多层数据结构,与Array、Stack、Queue相比是一种非线性的数据结构,在进行插入和搜索操作时很高效。在描述一个Tree时经常会用到下列概念:
-
Root(根):代表树的根节点,根节点没有父节点
-
Parent Node(父节点):一个节点的直接上级节点,只有一个
-
Child Node(子节点):一个节点的直接下级节点,可能有多个
-
Siblings(兄弟节点):具有相同父节点的节点
-
Leaf(叶节点):没有子节点的节点
-
Edge(边):两个节点之间的连接线
-
Path(路径):从源节点到目标节点的连续边
-
Height of Node(节点的高度):表示节点与叶节点之间的最长路径上边的个数
-
Height of Tree(树的高度):即根节点的高度
-
Depth of Node(节点的深度):表示从根节点到该节点的边的个数
-
Degree of Node(节点的度):表示子节点的个数
我们以二叉查找树为例,展示树在Javascript中的实现。在二叉查找树中,即每个节点最多只有两个子节点,而左侧子节点小于当前节点,而右侧子节点大于当前节点,如图所示:
一个二叉查找树应该具有以下常用方法:
-
add :向树中插入一个节点
-
findMin :查找树中最小的节点
-
findMax :查找树中最大的节点
-
find :查找树中的某个节点
-
isPresent :判断某个节点在树中是否存在
-
remove :移除树中的某个节点
以下是二叉查找树的Javascript实现:
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
|
class Node { constructor(data, left = null, right = null) { this.data = data; this.left = left; this.right = right; }}class BST { constructor() { this.root = null; } add(data) { const node = this.root; if (node === null) { this.root = new Node(data); return; } else { const searchTree = function (node) { if (data < node.data) { if (node.left === null) { node.left = new Node(data); return; } else if (node.left !== null) { return searchTree(node.left); } } else if (data > node.data) { if (node.right === null) { node.right = new Node(data); return; } else if (node.right !== null) { return searchTree(node.right); } } else { return null; } }; return searchTree(node); } } findMin() { let current = this.root; while (current.left !== null) { current = current.left; } return current.data; } findMax() { let current = this.root; while (current.right !== null) { current = current.right; } return current.data; } find(data) { let current = this.root; while (current.data !== data) { if (data < current.data) { current = current.left } else { current = current.right; } if (current === null) { return null; } } return current; } isPresent(data) { let current = this.root; while (current) { if (data === current.data) { return true; } if (data < current.data) { current = current.left; } else { current = current.right; } } return false; } remove(data) { const removeNode = function (node, data) { if (node == null) { return null; } if (data == node.data) { // node没有子节点 if (node.left == null && node.right == null) { return null; } // node没有左侧子节点 if (node.left == null) { return node.right; } // node没有右侧子节点 if (node.right == null) { return node.left; } // node有两个子节点 var tempNode = node.right; while (tempNode.left !== null) { tempNode = tempNode.left; } node.data = tempNode.data; node.right = removeNode(node.right, tempNode.data); return node; } else if (data < node.data) { node.left = removeNode(node.left, data); return node; } else { node.right = removeNode(node.right, data); return node; } } this.root = removeNode(this.root, data); }} |
测试一下:
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
|
const bst = new BST();bst.add(4);bst.add(2);bst.add(6);bst.add(1);bst.add(3);bst.add(5);bst.add(7);bst.remove(4);console.log(bst.findMin());console.log(bst.findMax());bst.remove(7);console.log(bst.findMax());console.log(bst.isPresent(4)); |
打印结果:
|
1
2
3
4
|
176false |
7. Trie(字典树,读音同try)
Trie也可以叫做Prefix Tree(前缀树),也是一种搜索树。Trie分步骤存储数据,树中的每个节点代表一个步骤,trie常用于存储单词以便快速查找,比如实现单词的自动完成功能。Trie中的每个节点都包含一个单词的字母,跟着树的分支可以可以拼写出一个完整的单词,每个节点还包含一个布尔值表示该节点是否是单词的最后一个字母。Trie一般有以下方法:
-
add :向字典树中增加一个单词
-
isWord :判断字典树中是否包含某个单词
-
print :返回字典树中的所有单词
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
|
/** * Trie的节点 */function Node() { this.keys = new Map(); this.end = false; this.setEnd = function () { this.end = true; }; this.isEnd = function () { return this.end; }}function Trie() { this.root = new Node(); this.add = function (input, node = this.root) { if (input.length === 0) { node.setEnd(); return; } else if (!node.keys.has(input[0])) { node.keys.set(input[0], new Node()); return this.add(input.substr(1), node.keys.get(input[0])); } else { return this.add(input.substr(1), node.keys.get(input[0])); } } this.isWord = function (word) { let node = this.root; while (word.length > 1) { if (!node.keys.has(word[0])) { return false; } else { node = node.keys.get(word[0]); word = word.substr(1); } } return (node.keys.has(word) && node.keys.get(word).isEnd()) ? true : false; } this.print = function () { let words = new Array(); let search = function (node = this.root, string) { if (node.keys.size != 0) { for (let letter of node.keys.keys()) { search(node.keys.get(letter), string.concat(letter)); } if (node.isEnd()) { words.push(string); } } else { string.length > 0 ? words.push(string) : undefined; return; } }; search(this.root, new String()); return words.length > 0 ? words : null; }} |
8. Graph(图)
Graph是节点(或顶点)以及它们之间的连接(或边)的集合。Graph也可以称为Network(网络)。根据节点之间的连接是否有方向又可以分为Directed Graph(有向图)和Undrected Graph(无向图)。Graph在实际生活中有很多用途,比如:导航软件计算最佳路径,社交软件进行好友推荐等等。Graph通常有两种表达方式: Adjaceny List(邻接列表) :
邻接列表可以表示为左侧是节点的列表,右侧列出它所连接的所有其他节点。和 Adjacency Matrix(邻接矩阵) :
邻接矩阵用矩阵来表示节点之间的连接关系,每行或者每列表示一个节点,行和列的交叉处的数字表示节点之间的关系:0表示没用连接,1表示有连接,大于1表示不同的权重。访问Graph中的节点需要使用遍历算法,遍历算法又分为广度优先和深度优先,主要用于确定目标节点和根节点之间的距离,在Javascript中,Graph可以用一个矩阵(二维数组)表示,广度优先搜索算法可以实现如下:
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
|
function bfs(graph, root) { var nodesLen = {}; for (var i = 0; i < graph.length; i++) { nodesLen[i] = Infinity; } nodesLen[root] = 0; var queue = [root]; var current; while (queue.length != 0) { current = queue.shift(); var curConnected = graph[current]; var neighborIdx = []; var idx = curConnected.indexOf(1); while (idx != -1) { neighborIdx.push(idx); idx = curConnected.indexOf(1, idx + 1); } for (var j = 0; j < neighborIdx.length; j++) { if (nodesLen[neighborIdx[j]] == Infinity) { nodesLen[neighborIdx[j]] = nodesLen[current] + 1; queue.push(neighborIdx[j]); } } } return nodesLen;} |
测试一下:
|
1
2
3
4
5
6
7
8
|
var graph = [ [0, 1, 1, 1, 0], [0, 0, 1, 0, 0], [1, 1, 0, 0, 0], [0, 0, 0, 1, 0], [0, 1, 0, 0, 0]];console.log(bfs(graph, 1)); |
打印:
|
1
2
3
4
5
6
7
|
{ 0: 2, 1: 0, 2: 1, 3: 3, 4: Infinity} |

浙公网安备 33010602011771号