深度学习-图像分类

 

 

 

 

import torch
import torchvision
import torch.nn as nn
from model import LeNet
import torch.optim as optim
import torchvision.transforms as transforms
import matplotlib.pyplot as plt
import numpy as np
import time



transform = transforms.Compose(
        [transforms.ToTensor(),
         transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])
#
#     # 50000张训练图片
#     # 第一次使用时要将download设置为True才会自动去下载数据集
train_set = torchvision.datasets.CIFAR10(root='./data', train=True,
                                             download=False, transform=transform)

train_loader = torch.utils.data.DataLoader(train_set, batch_size=36,
                                                shuffle=True, num_workers=0)

#     # 10000张验证图片
#     # 第一次使用时要将download设置为True才会自动去下载数据集
val_set = torchvision.datasets.CIFAR10(root='./data', train=False,
                                           download=False, transform=transform)
val_loader = torch.utils.data.DataLoader(val_set, batch_size=4,
                                         shuffle=False, num_workers=0)
val_data_iter = iter(val_loader)
val_image, val_label = next(val_data_iter)

classes = ('plane', 'car', 'bird', 'cat',
           'deer', 'dog', 'frog', 'horse', 'ship', 'truck')

def imshow(img):
    img = img / 2 + 0.5     # unnormalize
    npimg = img.numpy()
    plt.imshow(np.transpose(npimg, (1, 2, 0)))
    plt.show()

# print labels
print(' '.join(f'{classes[val_label[j]]:5s}' for j in range(4)))
# show images
imshow(torchvision.utils.make_grid(val_image))


#     net = LeNet()
#     loss_function = nn.CrossEntropyLoss()
#     optimizer = optim.Adam(net.parameters(), lr=0.001)
#
#     for epoch in range(5):  # loop over the dataset multiple times
#
#         running_loss = 0.0
#         for step, data in enumerate(train_loader, start=0):
#             # get the inputs; data is a list of [inputs, labels]
#             inputs, labels = data
#
#             # zero the parameter gradients
#             optimizer.zero_grad()
#             # forward + backward + optimize
#             outputs = net(inputs)
#             loss = loss_function(outputs, labels)
#             loss.backward()
#             optimizer.step()
#
#             # print statistics
#             running_loss += loss.item()
#             if step % 500 == 499:    # print every 500 mini-batches
#                 with torch.no_grad():
#                     outputs = net(val_image)  # [batch, 10]
#                     predict_y = torch.max(outputs, dim=1)[1]
#                     accuracy = torch.eq(predict_y, val_label).sum().item() / val_label.size(0)
#
#                     print('[%d, %5d] train_loss: %.3f  test_accuracy: %.3f' %
#                           (epoch + 1, step + 1, running_loss / 500, accuracy))
#                     running_loss = 0.0
#
#     print('Finished Training')
#
#     save_path = './Lenet.pth'
#     torch.save(net.state_dict(), save_path)
#
#
# if __name__ == '__main__':
#     main()

 

 

 

posted on 2023-01-11 12:43  ccxwyyjy  阅读(38)  评论(0)    收藏  举报