pytorch基础学习四
In [2]:
import torch
from torch import nn
from torch.utils.data import DataLoader
from torchvision import datasets
from torchvision.transforms import ToTensor
In [3]:
# 处理数据
# 从开放数据集下载训练数据。
training_data = datasets.FashionMNIST(
root="data",
train=True,
download=True,
transform=ToTensor(),
)
In [4]:
# 从开放数据集下载测试数据。
test_data = datasets.FashionMNIST(
root="data",
train=False,
download=True,
transform=ToTensor(),
)
batch_size = 64
In [5]:
# 创建数据加载器。
train_dataloader = DataLoader(training_data, batch_size=batch_size)
test_dataloader = DataLoader(test_data, batch_size=batch_size)
In [6]:
for X, y in test_dataloader:
print(f"Shape of X [N, C, H, W]: {X.shape}")
print(f"Shape of y: {y.shape}{y.dtype}")
break
Shape of X [N, C, H, W]: torch.Size([64, 1, 28, 28]) Shape of y: torch.Size([64]) torch.int64
In [7]:
# 创建模型
# 获取cpu或gpu设备进行训练
device = "cuda" if torch.cuda.is_available() else "cpu"
print(f"Using {device} device")
Using cpu device
In [8]:
# 定义模型
class NeuralNetwork(nn.Module):
def __init__(self):
super(NeuralNetwork, self).__init__()
self.flatten = nn.Flatten()
self.linear_relu_stack = nn.Sequential(
nn.Linear(28*28, 512),
nn.ReLU(),
nn.Linear(512, 512),
nn.ReLU(),
nn.Linear(512, 10)
)
def forward(self, x):
x = self.flatten(x)
logits = self.linear_relu_stack(x)
return logits
model = NeuralNetwork().to(device)
print(model)
NeuralNetwork(
(flatten): Flatten(start_dim=1, end_dim=-1)
(linear_relu_stack): Sequential(
(0): Linear(in_features=784, out_features=512, bias=True)
(1): ReLU()
(2): Linear(in_features=512, out_features=512, bias=True)
(3): ReLU()
(4): Linear(in_features=512, out_features=10, bias=True)
)
)
In [9]:
# 优化模型参数
loss_fn = nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(model.parameters(), lr=1e-3)
In [10]:
# 在单个训练循环中,模型对训练数据集进行预测(分批输入),并反向传播预测误差以调整模型的参数。
def train(dataloader, model, loss_fn, optimizer):
size = len(dataloader.dataset)
model.train()
for batch, (X, y) in enumerate(dataloader):
X, y = X.to(device), y.to(device)
# 计算预测误差
pred = model(X)
loss = loss_fn(pred, y)
# 反向传播
optimizer.zero_grad()
loss.backward()
optimizer.step()
if batch % 100 == 0:
loss, current = loss.item(), batch * len(X)
print(f"loss: {loss:>7f} [{current:>5d}/{size:>5d}]")
In [11]:
# 根据测试数据集检查模型的性能,以确保它正在学习。
def test(dataloader, model, loss_fn):
size = len(dataloader.dataset)
num_batches = len(dataloader)
model.eval()
test_loss, correct = 0, 0
with torch.no_grad():
for X, y in dataloader:
X, y = X.to(device), y.to(device)
pred = model(X)
test_loss += loss_fn(pred, y).item()
correct += (pred.argmax(1) == y).type(torch.float).sum().item()
test_loss /= num_batches
correct /= size
print(f"Test Error: \n Accuracy: {(100*correct):>0.1f}%, Avg loss: {test_loss:>8f}\n")
In [12]:
# 训练过程在多次迭代(epochs)中进行。在每个时期,模型都会学习参数以做出更好的预测。我们在每个时期打印模型的准确性和损失;
# 我们希望看到每个 epoch 的准确率增加和损失减少。
epochs = 5
for t in range(epochs):
print(f"Epoch {t+1}\n-------------------------------")
train(train_dataloader, model, loss_fn, optimizer)
test(test_dataloader, model, loss_fn)
print("Done!")
Epoch 1 ------------------------------- loss: 2.307462 [ 0/60000] loss: 2.289459 [ 6400/60000] loss: 2.273360 [12800/60000] loss: 2.263474 [19200/60000] loss: 2.252384 [25600/60000] loss: 2.221936 [32000/60000] loss: 2.228031 [38400/60000] loss: 2.192849 [44800/60000] loss: 2.194643 [51200/60000] loss: 2.164009 [57600/60000] Test Error: Accuracy: 48.0%, Avg loss: 2.155143 Epoch 2 ------------------------------- loss: 2.170278 [ 0/60000] loss: 2.157974 [ 6400/60000] loss: 2.101683 [12800/60000] loss: 2.111527 [19200/60000] loss: 2.070840 [25600/60000] loss: 2.006484 [32000/60000] loss: 2.034235 [38400/60000] loss: 1.955799 [44800/60000] loss: 1.969466 [51200/60000] loss: 1.894076 [57600/60000] Test Error: Accuracy: 61.5%, Avg loss: 1.887733 Epoch 3 ------------------------------- loss: 1.930098 [ 0/60000] loss: 1.895441 [ 6400/60000] loss: 1.777315 [12800/60000] loss: 1.807420 [19200/60000] loss: 1.716668 [25600/60000] loss: 1.657058 [32000/60000] loss: 1.677540 [38400/60000] loss: 1.579168 [44800/60000] loss: 1.611868 [51200/60000] loss: 1.495966 [57600/60000] Test Error: Accuracy: 62.3%, Avg loss: 1.512710 Epoch 4 ------------------------------- loss: 1.595690 [ 0/60000] loss: 1.550450 [ 6400/60000] loss: 1.395835 [12800/60000] loss: 1.455848 [19200/60000] loss: 1.352183 [25600/60000] loss: 1.337337 [32000/60000] loss: 1.349648 [38400/60000] loss: 1.279088 [44800/60000] loss: 1.323315 [51200/60000] loss: 1.211475 [57600/60000] Test Error: Accuracy: 63.5%, Avg loss: 1.239858 Epoch 5 ------------------------------- loss: 1.334896 [ 0/60000] loss: 1.308266 [ 6400/60000] loss: 1.136204 [12800/60000] loss: 1.234191 [19200/60000] loss: 1.116831 [25600/60000] loss: 1.132986 [32000/60000] loss: 1.156611 [38400/60000] loss: 1.099791 [44800/60000] loss: 1.145944 [51200/60000] loss: 1.056027 [57600/60000] Test Error: Accuracy: 64.5%, Avg loss: 1.077008 Done!
In [13]:
# 保存模型
# 保存模型的常用方法是序列化内部状态字典(包含模型参数)。
torch.save(model.state_dict(), "model.pth")
print("Saved PyTorch Model State to model.pth")
Saved PyTorch Model State to model.pth
In [14]:
# 加载模型
# 加载模型的过程包括重新创建模型结构并将状态字典加载到其中。
model = NeuralNetwork()
model.load_state_dict(torch.load("model.pth"))
Out[14]:
<All keys matched successfully>
In [15]:
# 利用该模型进行预测。
classes = [
"T-shirt/top",
"Trouser",
"Pullover",
"Dress",
"Coat",
"Sandal",
"Shirt",
"Sneaker",
"Bag",
"Ankle boot",
]
model.eval()
x, y = test_data[0][0], test_data[0][1]
with torch.no_grad():
pred = model(x)
predicted, actual = classes[pred[0].argmax(0)], classes[y]
print(f'Predicted: "{predicted}", Actual: "{actual}"')
Predicted: "Ankle boot", Actual: "Ankle boot"
浙公网安备 33010602011771号