Write an efficient algorithm that searches for a value in an m x n matrix. This matrix has the following properties:
- Integers in each row are sorted from left to right.
- The first integer of each row is greater than the last integer of the previous row.
For example,
Consider the following matrix:
[ [1, 3, 5, 7], [10, 11, 16, 20], [23, 30, 34, 50] ]
Given target = 3, return true.
这道题是二分查找Search Insert Position的题目,因为矩阵是行有序并且列有序,查找只需要先按行查找,定位出在哪一行之后再进行列查找即可,所以就是进行两次二分查找。时间复杂度是O(logm+logn),空间上只需两个辅助变量,因而是O(1),代码如下:
- public boolean searchMatrix(int[][] matrix, int target) {
- if(matrix == null || matrix.length==0 || matrix[0].length==0)
- return false;
- int l = 0;
- int r = matrix.length-1;
- while(l<=r)
- {
- int mid = (l+r)/2;
- if(matrix[mid][0] == target) return true;
- if(matrix[mid][0] > target)
- {
- r = mid-1;
- }
- else
- {
- l = mid+1;
- }
- }
- int row = r;
- if(row<0)
- return false;
- l = 0;
- r = matrix[0].length-1;
- while(l<=r)
- {
- int mid = (l+r)/2;
- if(matrix[row][mid] == target) return true;
- if(matrix[row][mid] > target)
- {
- r = mid-1;
- }
- else
- {
- l = mid+1;
- }
- }
- return false;
- }
二分查找是面试中出现频率不低的问题,但是很少直接考二分查找,会考一些变体,除了这道题,还有Search in Rotated Sorted Array和Search for a Range,思路其实差不多,稍微变化一下即可,有兴趣可以练习一下哈。
class Solution {
public:
bool searchMatrix(vector<vector<int> > &matrix, int target) {
if (matrix.empty() || matrix[0].empty()) return false;
const int m = matrix.size(), n = matrix[0].size();
int start = 0, end = m * n - 1;
while (start <= end) {
int mid = start + (end - start) / 2;
int i = mid / n, j = mid % n;
if (matrix[i][j] == target) return true;
if (matrix[i][j] < target) start = mid + 1;
else end = mid - 1;
}
return false;
}
};
浙公网安备 33010602011771号