# coding: utf-8
# In[19]:
import random
import numpy as np
from cs231n.data_utils import load_CIFAR10
import matplotlib.pyplot as plt
from __future__ import print_function
get_ipython().run_line_magic('matplotlib', 'inline')
plt.rcParams['figure.figsize'] = (10.0, 8.0) # set default size of plots
plt.rcParams['image.interpolation'] = 'nearest'
plt.rcParams['image.cmap'] = 'gray'
get_ipython().run_line_magic('load_ext', 'autoreload')
get_ipython().run_line_magic('autoreload', '2')
# In[20]:
cifar10_dir = 'cs231n/datasets/cifar-10-batches-py'
try:
del X_train, y_train
del X_test, y_test
print('Clear previously loaded data.')
except:
pass
X_train, y_train, X_test, y_test = load_CIFAR10(cifar10_dir)
print(X_train.shape,y_train.shape, X_test.shape, y_test.shape)
# In[21]:
num_training = 5000
mask = list(range(num_training))
X_train = X_train[mask]
y_train = y_train[mask]
num_test = 50 #500 #加快速度,取50测试
mask = list(range(num_test))
X_test = X_test[mask]
y_test = y_test[mask]
print('ok')
# In[22]:
# 三维转一维
print(X_train.shape, X_test.shape) # (5000, 32, 32, 3) (500, 32, 32, 3)
X_train = np.reshape(X_train, (X_train.shape[0], -1))
X_test = np.reshape(X_test, (X_test.shape[0], -1))
print(X_train.shape, X_test.shape) # (5000, 3072) (500, 3072) 32*32*3=3072
# In[109]:
class NearestNeighbor(object):
def train(self, X, y):
self.Xtrain = X
self.ytr = y
########################################################################
# 直接预测
def predict_l1(self, X): # 曼哈顿距离
num_test = X.shape[0]
Ypred = np.zeros(num_test, dtype = self.ytr.dtype)
for i in range(num_test):
distances = np.sum(np.abs(self.Xtrain - X[i,:]), axis = 1) # L1
min_index = np.argmin(distances) # get the index with smallest distance
Ypred[i] = self.ytr[min_index] # predict the label of the nearest example
return Ypred
def predict_l2(self, X): # 欧氏距离
num_test = X.shape[0]
Ypred = np.zeros(num_test, dtype = self.ytr.dtype)
for i in range(num_test):
distances = np.sqrt(np.sum(np.square(self.Xtrain - X[i,:]), axis = 1))
min_index = np.argmin(distances) # get the index with smallest distance
Ypred[i] = self.ytr[min_index] # predict the label of the nearest example
return Ypred
########################################################################
# 以下计算欧氏距离l2
def compute_dist_2_loop(self,Xtest):
train_len = self.Xtrain.shape[0]
test_len = Xtest.shape[0]
dists = np.zeros((test_len,train_len))
for i in range(test_len):
for j in range(train_len):
# dists[i][j] = np.sum(np.abs(self.Xtrain[j]-Xtest[i])) # l1
dists[i][j] = np.sqrt( np.sum( np.square(self.Xtrain[j]-Xtest[i]) ) ) # l2
# dists[i][j] dists[i,j]
return dists # 1203599820.3775597
def compute_dist_1_loop(self,Xtest):
train_len = self.Xtrain.shape[0] # 5000
test_len = Xtest.shape[0] # 50
dists = np.zeros( (test_len, train_len) ) # 50*5000
for i in range(test_len):
dists[i] = np.sqrt(np.sum(np.square(self.Xtrain-Xtest[i]), axis=1))
# dists[i,:] dists[i]
# dists[i,:] = np.linalg.norm(X[i,:]-self.X_train,axis=1)
#np.linalg.norm范式
# https://blog.csdn.net/lanchunhui/article/details/51004387
return dists # 1203599820.3775597
def compute_dist_no_loop(self,Xtest):
# 大概可以理解为 sqrt((a-b)^2) => sqrt( a^2 + b^2 - 2ab ) 展开,矩阵注意维度
a2 = np.sum(self.Xtrain**2, axis=1) # 5000*1 # **2 or np.square
b2 = np.sum(Xtest**2, axis=1) # 50*1
dot_matrix = np.dot(Xtest, self.Xtrain.T) # 50*5000
# print(dot_matrix.shape)
# print(a2.shape) # (5000,)
# print(b2.shape) # (50,)
# print(b2.T.shape) #对向量直接用.T 向量不变 (50,)
# 此时,a2 b2都是向量,要与点积得到的矩阵50*5000想相a加减,先将reshape,后用到广播机制
# 向量貌似e可以隐式转换为一个1行n列的矩阵,但不可隐式转为n行1列的矩阵
return np.sqrt(a2 + np.reshape(b2,(-1,1)) - 2*dot_matrix) # reshape -1 自适应
# https://blog.csdn.net/qq_41671051/article/details/80096269
# https://blog.csdn.net/hqh131360239/article/details/79061535
def _compute_distances_no_loops(self, X):
num_test = X.shape[0]
num_train = self.Xtrain.shape[0]
dists = np.zeros((num_test, num_train))
test_sum = np.sum(np.square(X), axis = 1) # 500*3072 - 500*1 以500,形式表示
train_sum = np.sum(np.square(self.Xtrain), axis = 1) # 5000*3072 - 5000*1 以5000,形式表示
dianji = np.dot(X, self.Xtrain.T) #点积(转置)500*5000
dists = np.sqrt(-2 * dianji + test_sum.reshape(-1,1) + train_sum) #平方展开,广播
return dists
# In[ ]:
# 2 loop、1 loop、no loop三种方式,
# 2 loop、1 loop 耗时较长,时间差不多
# no loop 耗时短。并行运算,大大提高了速度。
# In[110]:
classifier = NearestNeighbor()
classifier.train(X_train, y_train)
# ans_l1 = classifier.predict_l1(X_test)
# print(np.mean(ans_l1==y_test)) # 0.22
# ans_l2 = classifier.predict_l2(X_test)
# print(np.mean(ans_l2==y_test)) # 0.18
ans = classifier.compute_dist_no_loop(X_test)
print(np.sum(ans)) # 1203599820.3775597
print('ok')
# In[85]:
#################################
# test area
import numpy as np
a = np.array([ [1,2,3], [4,5,6], [7,8,9] ])
# print(a)
# print(a[1][1],a[1,1])
# print(a[1])
# print(np.array((-2,4,2)))
print(np.square(a))
print(a**2)