Poj 1979 Red and Black

 

 
Online Judge Problem Set Authors Online Contests User
Web Board
Home PageF.A.Qs


Statistical Charts
Problems
Submit Problem
Online Status
Prob.ID:
Register
Update your info
Authors ranklist
Current Contest
Past Contests
Scheduled Contests
Award Contest
cbam      Log Out
Mail:0(0)
Login Log      Archive

 

Language:
Red and Black
Time Limit: 1000MS   Memory Limit: 30000K
Total Submissions: 24921   Accepted: 13447

Description

There is a rectangular room, covered with square tiles. Each tile is colored either red or black. A man is standing on a black tile. From a tile, he can move to one of four adjacent tiles. But he can't move on red tiles, he can move only on black tiles. 

Write a program to count the number of black tiles which he can reach by repeating the moves described above. 

Input

The input consists of multiple data sets. A data set starts with a line containing two positive integers W and H; W and H are the numbers of tiles in the x- and y- directions, respectively. W and H are not more than 20. 

There are H more lines in the data set, each of which includes W characters. Each character represents the color of a tile as follows. 

'.' - a black tile 
'#' - a red tile 
'@' - a man on a black tile(appears exactly once in a data set) 
The end of the input is indicated by a line consisting of two zeros. 

Output

For each data set, your program should output a line which contains the number of tiles he can reach from the initial tile (including itself).

Sample Input

6 9
....#.
.....#
......
......
......
......
......
#@...#
.#..#.
11 9
.#.........
.#.#######.
.#.#.....#.
.#.#.###.#.
.#.#..@#.#.
.#.#####.#.
.#.......#.
.#########.
...........
11 6
..#..#..#..
..#..#..#..
..#..#..###
..#..#..#@.
..#..#..#..
..#..#..#..
7 7
..#.#..
..#.#..
###.###
...@...
###.###
..#.#..
..#.#..
0 0

Sample Output

45
59
6
13

Source

 
 
 

 

 完全是图的遍历,求所能在局限范围内走的最大步数。

#include<iostream>
#include<string.h>
using namespace std;

char cnt[21][21];
int step,Max[5],W,H;
int vis[21][21];

int dic[4][2]= {{0,1},{1,0},{-1,0},{0,-1}};
void  dfs (int x,int y)
{
    for(int i=0; i<4; i++)
    {
        int tx=x+dic[i][0];
        int ty=y+dic[i][1];
        if(tx>=0&&ty>=0&&tx<H&&ty<W&&!vis[tx][ty]&&cnt[tx][ty]!='#')
        {
            step++;
            vis[tx][ty]=1;
            dfs(tx,ty);

        }
    }
    return ;
}

int main()
{
    int si,sj;
    while(cin>>W>>H,W+H)
    {
        memset(vis,0,sizeof(vis));
        step=1;
        for(int i=0; i<H; i++)
            for(int j=0; j<W; j++)
            {
                cin>>cnt[i][j];
                if(cnt[i][j]=='@')
                {
                    si=i;
                    sj=j;
                }
            }
        vis[si][sj]=1;
        dfs(si,sj);

        cout<<step<<endl;

    }
}


 

 


 

All Rights Reserved 2003-2013 Ying Fuchen,Xu Pengcheng,Xie Di
Any problem, Please Contact Administrator

 

posted @ 2015-05-05 12:37  cbam  阅读(100)  评论(0)    收藏  举报