HUST 1347 Reverse Number(哈理工 亚洲区选拔赛前练习赛)
Description
Given a non-negative integer sequence A with length N, you can exchange two adjacent numbers each time. After K exchanging operations, what’s the minimum reverse number the sequence can achieve? The reverse number of a sequence is the number
of pairs (i, j) such that i < j and Ai > Aj
Input
There are multiple cases. For each case, first line contains two numbers: N, K 2<=N<=100000, 0 <= K < 2^60 Second line contains N non-negative numbers, each of which not greater than 2^30
Output
Minimum reverse number you can get after K exchanging operations.
Sample Input
3 1 3 2 1 5 2 5 1 4 3 2
Sample Output
Case #1: 2
Case #2: 5
先用树状数组求出逆序数。因为每一次交换可以增加或着减少一对逆序数,假设有m对逆序数,我们交换n对,那么这n对我们让他每次都减少一对逆序数,交换n次后 还有m - n对
逆序。注意题目中k的取值,如果求出的逆序数大于k,那么可以直接得出结果 res - k ,如果小于k,此时就要注意数字串中是否有重复的,如果没有那么当交换res - k次后
此时逆序数恰好为0, 剩余交换次数为k - res,如果k - res为偶数,那么我们可以重复交换同一对此时逆序数还为0,如果为奇数,此时只能结果为1。 如果字串中有重复的
那么可以交换那两个重复的数,此时无论是奇数还是偶数,结果并不影响最小逆序对总数。
/*=============================================================================
#
# Author: liangshu - cbam
#
# QQ : 756029571
#
# School : 哈尔滨理工大学
#
# Last modified: 2015-08-30 22:32
#
# Filename: A.cpp
#
# Description:
# The people who are crazy enough to think they can change the world, are the ones who do !
=============================================================================*/
#
#include<iostream>
#include<sstream>
#include<algorithm>
#include<cstdio>
#include<string.h>
#include<cctype>
#include<string>
#include<cmath>
#include<vector>
#include<stack>
#include<queue>
#include<map>
#include<set>
using namespace std;
#define maxn 100010
struct node
{
int v,id;
} s[maxn];
int c[maxn],n;
typedef long long ll;
ll res;
bool cmp(node x,node y)
{
return ((x.v>y.v) || ((x.v==y.v)&&(x.id>y.id)));
}
int Lowbit(int x)
{
return x&(x^(x-1));
}
ll Getsum(int pos)
{
ll ret = 0LL;
while(pos>0)
{
ret+=c[pos];
pos -= Lowbit(pos);
}
return ret;
}
ll update(int pos)
{
while(pos<=n)
{
c[pos]++;
pos+=Lowbit(pos);
}
}
int main()
{
int k,x;
int cs = 1;
while(scanf("%d%d",&n,&k)!=EOF)
{
set<int>cnt;
memset(c,0,sizeof(c));
res = 0;
for(int i=1; i<=n; i++)
{
scanf("%d",&s[i].v);
cnt.insert(s[i].v);
s[i].id = i;
}
sort(s+1,s+n+1,cmp);
for(int i=1; i<=n; i++)
{
res += Getsum(s[i].id);
update(s[i].id);
}
if((res-k)>=0)
printf("Case #%d: %lld\n",cs ++,res-k);
else
{
if(cnt.size() < n)
{
printf("Case #%d: 0\n",cs ++);
}
else
{
if(abs(res-k)%2) printf("Case #%d: 1\n",cs ++);
else
printf("Case #%d: 0\n",cs ++);
}
}
}
return 0;
}

浙公网安备 33010602011771号