6、好莱坞明星识别
- 🍨 本文为🔗365天深度学习训练营 中的学习记录博客
- 🍦 参考文章:365天深度学习训练营-第P2周:彩色识别
- 🍖 原作者:K同学啊|接辅导、项目定制
对于模型的优化¶
第一次优化¶
首先采用baseline,我们的test_acc只能够达到20%不到,连train_acc也是如此,明显是欠拟合。对于一个模型我们第一步起码要让train_acc能够能够到95%的过拟合程度才配说进行test_acc的优化。由于VGG16模型本身较为复杂,并不可能是由于模型复杂度较低导致的欠拟合。由此我首先进行了学习率的调大,调整lr到10看看是否是由于学习率太小导致的不足。
结果得到如下:
Epoch:40, Train_acc:64.7%, Train_loss:134.587, Test_acc:45.8%, Test_loss:208.556, Lr:4.34E+00
这说明确实提高学习率能够增加精确度。
第二次优化¶
由于第一次优化中train_acc仍然在提高中,由此决定进一步提高lr,这次提高到50,同时将lr衰减机制去除。 结果如下
Epoch:40, Train_acc:60.3%, Train_loss:1157.049, Test_acc:38.9%, Test_loss:2019.087, Lr:5.00E+01
这次train_acc较快达到40%,但是到60%花了很久,而且最终性能不如第一次优化结果。这说明提高lr已经走到了能力范围内的极限。
第三次优化¶
仔细审阅模型,发现dropout为0.5,这对于一个欠拟合的模型来说显然是不合适的,虽然保留dropout层,但是将0.5提高到0.9进行尝试,同时将lr调整到10 结果如下
Epoch:40, Train_acc:18.0%, Train_loss:9157.342, Test_acc:30.0%, Test_loss:1639.763, Lr:8.17E+00
进行修改后train_acc真的蛮低的,不如dropout之前,但是test_acc反而较高,再次尝试调大lr。
Epoch:40, Train_acc:19.3%, Train_loss:43577.336, Test_acc:30.0%, Test_loss:9402.872, Lr:4.09E+01
好像并没有太多的用处,可以推断出与lr相关性不大。为什么提高dropout(减少正则化)反而导致结果下降?
第四次优化¶
反向操作,将dropout降低到0.2,保持lr不变。好像搞反了dropout的定义,对于欠拟合的要调低,过拟合的调高,一般维持在0.3-0.5区间内。
Epoch:39, Train_acc:87.2%, Train_loss:140.784, Test_acc:48.3%, Test_loss:1002.215, Lr:4.17E+01
成功将train_acc提高到88.3%,虽然在test_acc上仍然较低为43.1%。
第五次优化¶
这次将dropout调整到0.3,同时改变了优化器,采用Adam优化器,15个epoch train_acc就达到了80%的数值,但是后续就稍微有点卡住了,最好结果如下
Epoch:29, Train_acc:85.6%, Train_loss:3392.161, Test_acc:48.1%, Test_loss:23952.387, Lr:4.34E+01
第六次优化¶
将dropout设置为0,结果很容易就发生了过拟合
Epoch:39, Train_acc:97.5%, Train_loss:317.341, Test_acc:47.5%, Test_loss:25803.093, Lr:4.17E+01
import torch
import torch.nn as nn
import torchvision.transforms as transforms
import torchvision
from torchvision import transforms, datasets
from sklearn.model_selection import KFold
from torch.optim.lr_scheduler import StepLR, MultiStepLR, LambdaLR, ExponentialLR, CosineAnnealingLR, ReduceLROnPlateau
import os,PIL,pathlib,random
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
device
2、导入数据¶
data_dir = '../data/6-data'
# 通过Path类创建路径对象
data_dir = pathlib.Path(data_dir)
# 获取路径下所有文件路径
paths= list(data_dir.glob('*'))
# 获取所有文件夹的名字,也就是图片类别
classNames = [str(path).split("\\")[3] for path in paths] # K哥classNames中间会多一个e
classNames
# 关于transforms.Compose的更多介绍可以参考:https://blog.csdn.net/qq_38251616/article/details/124878863
train_transforms = transforms.Compose([
transforms.Resize([224, 224]), # 将输入图片resize成统一尺寸
# transforms.RandomHorizontalFlip(), # 随机水平翻转
transforms.ToTensor(), # 将PIL Image或numpy.ndarray转换为tensor,并归一化到[0,1]之间
transforms.Normalize( # 标准化处理-->转换为标准正太分布(高斯分布),使模型更容易收敛
mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225]) # 其中 mean=[0.485,0.456,0.406]与std=[0.229,0.224,0.225] 从数据集中随机抽样计算得到的。
])
total_data = datasets.ImageFolder("../data/6-data/",transform=train_transforms)
total_data
total_data.class_to_idx
3、划分数据集¶
train_size = int(0.8 * len(total_data))
test_size = len(total_data) - train_size
train_dataset, test_dataset = torch.utils.data.random_split(total_data, [train_size, test_size])
train_dataset, test_dataset
kf = KFold(n_splits=10,shuffle=True, random_state=42) # 初始化KFold
for train_index , test_index in kf.split(total_dataset): # split
# get train, val 根据索引划分
train_dataset = torch.utils.data.dataset.Subset(total_dataset, train_index)
test_dataset = torch.utils.data.dataset.Subset(total_dataset, test_index)
# package type of DataLoader
train_loader = torch.utils.data.DataLoader(dataset=train_dataset, batch_size=batch_size, shuffle=True)
test_loader = torch.utils.data.DataLoader(dataset=test_dataset, batch_size=batch_size, shuffle=True)
train_loader
batch_size = 32
train_dl = torch.utils.data.DataLoader(train_dataset,
batch_size=batch_size,
shuffle=True,
num_workers=3)
test_dl = torch.utils.data.DataLoader(test_dataset,
batch_size=batch_size,
shuffle=True,
num_workers=3)
for X, y in test_dl:
print("Shape of X [N, C, H, W]: ", X.shape)
print("Shape of y: ", y.shape, y.dtype)
break
二、调用官方的VGG-16模型¶
对于一般的CNN网络来说,都是由特征提取网络和分类网络构成,其中特征提取网络用于提取图片的特征,分类网络用于将图片进行分类。
from torchvision.models import vgg16
device = "cuda" if torch.cuda.is_available() else "cpu"
print("Using {} device".format(device))
# 加载预训练模型,并且对模型进行微调
model = vgg16(pretrained = True).to(device) # 加载预训练的vgg16模型
for param in model.parameters():
param.requires_grad = False # 冻结模型的参数,这样子在训练的时候只训练最后一层的参数
# 修改classifier模块的第6层(即:(6): Linear(in_features=4096, out_features=1000, bias=True))
# 注意查看我们下方打印出来的模型
model.classifier._modules['2'] = nn.Dropout(p=0, inplace=False) # 修改vgg16模型中最后一层全连接层,输出目标类别个数
model.classifier._modules['5'] = nn.Dropout(p=0, inplace=False) # 修改vgg16模型中最后一层全连接层,输出目标类别个数
model.classifier._modules['6'] = nn.Linear(4096,len(classNames)) # 修改vgg16模型中最后一层全连接层,输出目标类别个数
model.to(device)
model
# 训练循环
def train(dataloader, model, loss_fn, optimizer):
size = len(dataloader.dataset) # 训练集的大小
num_batches = len(dataloader) # 批次数目, (size/batch_size,向上取整)
train_loss, train_acc = 0, 0 # 初始化训练损失和正确率
for X, y in dataloader: # 获取图片及其标签
X, y = X.to(device), y.to(device)
# 计算预测误差
pred = model(X) # 网络输出
loss = loss_fn(pred, y) # 计算网络输出和真实值之间的差距,targets为真实值,计算二者差值即为损失
# 反向传播
optimizer.zero_grad() # grad属性归零
loss.backward() # 反向传播
optimizer.step() # 每一步自动更新
# 记录acc与loss
train_acc += (pred.argmax(1) == y).type(torch.float).sum().item()
train_loss += loss.item()
train_acc /= size
train_loss /= num_batches
return train_acc, train_loss
2、编写训练函数¶
def test (dataloader, model, loss_fn):
size = len(dataloader.dataset) # 测试集的大小
num_batches = len(dataloader) # 批次数目, (size/batch_size,向上取整)
test_loss, test_acc = 0, 0
# 当不进行训练时,停止梯度更新,节省计算内存消耗
with torch.no_grad():
for imgs, target in dataloader:
imgs, target = imgs.to(device), target.to(device)
# 计算loss
target_pred = model(imgs)
loss = loss_fn(target_pred, target)
test_loss += loss.item()
test_acc += (target_pred.argmax(1) == target).type(torch.float).sum().item()
test_acc /= size
test_loss /= num_batches
return test_acc, test_loss
3、设置动态学习率¶
learn_rate = 50 # 初始学习率
# 调用官方动态学习率接口时使用
lambda1 = lambda epoch: 0.98 ** (epoch // 4)
optimizer = torch.optim.Adam(model.parameters(), lr=learn_rate)
scheduler = torch.optim.lr_scheduler.LambdaLR(optimizer, lr_lambda=lambda1) #选定调整方法
4、正式训练¶
import copy
loss_fn = nn.CrossEntropyLoss() # 创建损失函数
epochs = 40
train_loss = []
train_acc = []
test_loss = []
test_acc = []
best_acc = 0 # 设置一个最佳准确率,作为最佳模型的判别指标
for epoch in range(epochs):
model.train()
epoch_train_acc, epoch_train_loss = train(train_dl, model, loss_fn, optimizer)
scheduler.step() # 更新学习率(调用官方动态学习率接口时使用)
model.eval()
epoch_test_acc, epoch_test_loss = test(test_dl, model, loss_fn)
# 保存最佳模型到 best_model
if epoch_test_acc > best_acc:
best_acc = epoch_test_acc
best_model = copy.deepcopy(model)
train_acc.append(epoch_train_acc)
train_loss.append(epoch_train_loss)
test_acc.append(epoch_test_acc)
test_loss.append(epoch_test_loss)
# 获取当前的学习率
lr = optimizer.state_dict()['param_groups'][0]['lr']
template = ('Epoch:{:2d}, Train_acc:{:.1f}%, Train_loss:{:.3f}, Test_acc:{:.1f}%, Test_loss:{:.3f}, Lr:{:.2E}')
print(template.format(epoch+1, epoch_train_acc*100, epoch_train_loss,
epoch_test_acc*100, epoch_test_loss, lr))
# 保存最佳模型到文件中
PATH = './best_model.pth' # 保存的参数文件名
torch.save(model.state_dict(), PATH)
print('Done')
import matplotlib.pyplot as plt
#隐藏警告
import warnings
warnings.filterwarnings("ignore") #忽略警告信息
plt.rcParams['font.sans-serif'] = ['SimHei'] # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False # 用来正常显示负号
plt.rcParams['figure.dpi'] = 100 #分辨率
epochs_range = range(epochs)
plt.figure(figsize=(12, 3))
plt.subplot(1, 2, 1)
plt.plot(epochs_range, train_acc, label='Training Accuracy')
plt.plot(epochs_range, test_acc, label='Test Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')
plt.subplot(1, 2, 2)
plt.plot(epochs_range, train_loss, label='Training Loss')
plt.plot(epochs_range, test_loss, label='Test Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')
plt.show()
2、指定图片进行预测¶
from PIL import Image
classes = list(train_dataset.class_to_idx)
def predict_one_image(image_path, model, transform, classes):
test_img = Image.open(image_path).convert('RGB')
plt.imshow(test_img) # 展示预测的图片
test_img = transform(test_img)
img = test_img.to(device).unsqueeze(0)
model.eval()
output = model(img)
_,pred = torch.max(output,1)
pred_class = classes[pred]
print(f'预测结果是:{pred_class}')
# 预测训练集中的某张照片
predict_one_image(image_path='E:/jupyter-notebook/data/6-data/Angelina Jolie/001_fe3347c0.jpg',
model=model,
transform=train_transforms,
classes=classes)
3、模型评估¶
best_model.eval()
epoch_test_acc, epoch_test_loss = test(test_dl, best_model, loss_fn)
epoch_test_acc, epoch_test_loss
# 查看是否与我们记录的最高准确率一致
epoch_test_acc

浙公网安备 33010602011771号