1 import tensorflow as tf
2 import numpy
3 import matplotlib.pyplot as plt
4 #from sklearn.model_selection import train_test_split
5 rng = numpy.random
6
7 # Parameters
8 learning_rate = 0.01
9 training_epochs = 2000
10 display_step = 50
11
12 # Training Data
13 train_X = numpy.asarray([3.3,4.4,5.5,6.71,6.93,4.168,9.779,6.182,7.59,2.167,7.042,10.791,5.313,7.997,5.654,9.27,3.1])
14 train_Y = numpy.asarray([1.7,2.76,2.09,3.19,1.694,1.573,3.366,2.596,2.53,1.221,2.827,3.465,1.65,2.904,2.42,2.94,1.3])
15 n_samples = train_X.shape[0]
16
17 # tf Graph Input
18 X = tf.placeholder("float")
19 Y = tf.placeholder("float")
20
21 # Create Model
22
23 # Set model weights
24 W = tf.Variable(rng.randn(), name="weight")
25 b = tf.Variable(rng.randn(), name="bias")
26
27 # Construct a linear model
28 activation = tf.add(tf.mul(X, W), b)
29
30 # Minimize the squared errors
31 cost = tf.reduce_sum(tf.pow(activation-Y, 2))/(2*n_samples) #L2 loss
32
33 #reduce_sum:把里面的平方求和
34 # pow(x,y):这个是表示x的y次幂。
35
36 optimizer = tf.train.GradientDescentOptimizer(learning_rate).minimize(cost)
37
38 #Gradient descent
39
40 # Initializing the variables
41 init = tf.initialize_all_variables()
42
43 # Launch the graph
44 with tf.Session() as sess:
45 sess.run(init)
46
47 # Fit all training data
48 for epoch in range(training_epochs):
49 for (x, y) in zip(train_X, train_Y):
50 sess.run(optimizer, feed_dict={X: x, Y: y})
51 #zip:对应的元素打包成一个个元组
52 #Display logs per epoch step
53 if epoch % display_step == 0:
54 print("Epoch:", '%04d' % (epoch+1), "cost=", \
55 "{:.9f}".format(sess.run(cost, feed_dict={X: train_X, Y:train_Y})), \
56 "W=", sess.run(W), "b=", sess.run(b))
57
58 print("Optimization Finished!")
59 print("cost=", sess.run(cost, feed_dict={X: train_X, Y: train_Y}), \
60 "W=", sess.run(W), "b=", sess.run(b))
61
62 #Graphic display
63 plt.plot(train_X, train_Y, 'ro', label='Original data')
64 plt.plot(train_X, sess.run(W) * train_X + sess.run(b), label='Fitted line')
65 plt.legend()
66 plt.show()