Spark——Spark Streaming 对比 Structured Streaming

 

简介

Spark Streaming

Spark Streaming是spark最初的流处理框架,使用了微批的形式来进行流处理。

提供了基于RDDs的Dstream API,每个时间间隔内的数据为一个RDD,源源不断对RDD进行处理来实现流计算。

Structured Streaming

 Spark 2.X出来的流框架,采用了无界表的概念,流数据相当于往一个表上不断追加行。

 基于Spark SQL引擎实现,可以使用大多数Spark SQL的function。

 

区别

1、流模型

  • Spark Streaming

 Spark Streaming采用微批的处理方法。每一个批处理间隔的为一个批,也就是一个RDD,我们对RDD进行操作就可以源源不断的接收、处理数据。

  • Structured Streaming

 Structured Streaming将实时数据当做被连续追加的表。流上的每一条数据都类似于将一行新数据添加到表中。

以上图为例,每隔1秒从输入源获取数据到Input Table,并触发Query计算,然后将结果写入Result Table,之后根据指定的Output模式进行写出。

上面的1秒是指定的触发间隔(trigger interval),如果不指定的话,先前数据的处理完成后,系统将立即检查是否有新数据。

需要注意的是,Spark Streaming本身设计就是一批批的以批处理间隔划分RDD;而Structured Streaming中并没有提出批的概念,

Structured Streaming按照每个Trigger Interval接收数据到Input Table,将数据处理后再追加到无边界的Result Table中,想要何种方式输出结果取决于指定的模式。

所以,虽说Structured Streaming也有类似于Spark Streaming的Interval,其本质概念是不一样的。Structured Streaming更像流模式。

2、RDD vs DataFrame、DataSet

  • Spark Streaming

Spark Streaming中的DStream编程接口是RDD,我们需要对RDD进行处理,处理起来较为费劲且不美观。

stream.foreachRDD(rdd => {  
   balabala(rdd)  
})
  • Structured Streaming

Structured Streaming使用DataFrame、DataSet的编程接口,处理数据时可以使用Spark SQL中提供的方法,数据的转换和输出会变得更加简单。

spark  
.readStream
.format("kafka")
.option("kafka.bootstrap.servers", "hadoop01:9092") .option("subscribe", "order_data")
.load()
.select($"value".cast("string"))
.as[String]
.writeStream
.outputMode("complete")
.format("console")

3、Process Time vs Event Time

Process Time:流处理引擎接收到数据的时间

Event Time:时间真正发生的时间

  • Spark Streaming

Spark Streaming中由于其微批的概念,会将一段时间内接收的数据放入一个批内,进而对数据进行处理。划分批的时间是Process Time,而不是Event Time,Spark Streaming没有提供对Event Time的支持。

  • Structured Streaming

Structured Streaming提供了基于事件时间处理数据的功能,如果数据包含事件的时间戳,就可以基于事件时间进行处理。

这里以窗口计数为例说明一下区别:

我们这里以10分钟为窗口间隔,5分钟为滑动间隔,每隔5分钟统计过去10分钟网站的pv

假设有一些迟到的点击数据,其本身事件时间是12:01,被spark接收到的时间是12:11;在spark streaming的统计中,会毫不犹豫的将它算作是12:05-12:15这个范围内的pv,这显然是不恰当的;

在structured streaming中,可以使用事件时间将它划分到12:00-12:10的范围内,这才是我们想要的效果。

4、可靠性保障

两者在可靠性保证方面都是使用了checkpoint机制。

checkpoint通过设置检查点,将数据保存到文件系统,在出现出故障的时候进行数据恢复。

  • Spark Streaming

在spark streaming中,如果我们需要修改流程序的代码,在修改代码重新提交任务时,是不能从checkpoint中恢复数据的(程序就跑不起来),是因为spark不认识修改后的程序了。

  • Structured Streaming

在structured streaming中,对于指定的代码修改操作,是不影响修改后从checkpoint中恢复数据的。具体可参见文档

5、Sink

二者的输出数据(写入下游)的方式有很大的不同。

  • Spark Streaming

spark streaming中提供了 foreachRDD() 方法,通过自己编程实现将每个批的数据写出。

stream.foreachRDD(rdd => {  
    save(rdd)  
})
  • Structured Streaming

structured streaming自身提供了一些sink(Console Sink、File Sink、Kafka Sink等),只要通过option配置就可以使用;对于需要自定义的Sink,提供了ForeachWriter的编程接口,实现相关方法就可以完成。

// console sink  
val query = res  
.writeStream
.outputMode("append")
.format("console")
.start()

 

总结

总体来说,structured streaming有更简洁的API、更完善的流功能、更适用于流处理。而spark streaming,更适用于与偏批处理的场景。
在流处理引擎方面,flink最近也很火,值得我们去学习一番。

 

 

引用:

posted on 2020-08-26 10:50  曹伟雄  阅读(3214)  评论(0编辑  收藏  举报

导航