RDD、DataFrame和DataSet比较
RDD、DataFrame和DataSet是容易产生混淆的概念,必须对其相互之间对比,才可以知道其中异同。
共性:
1、RDD、DataFrame、Dataset全都是spark平台下的分布式弹性数据集,为处理超大型数据提供便利
2、三者都有惰性机制,在进行创建、转换,如map方法时,不会立即执行,只有在遇到Action如foreach时,三者才会开始遍历运算,极端情况下,如果代码里面有创建、转换,但是后面没有在Action中使用对应的结果,在执行时会被直接跳过,如
12345678valsparkconf=newSparkConf().setMaster("local").setAppName("test").set("spark.port.maxRetries","1000")valspark=SparkSession.builder().config(sparkconf).getOrCreate()valrdd=spark.sparkContext.parallelize(Seq(("a",1), ("b",1), ("a",1)))rdd.map{line=>println("运行")line._1}map中的println("运行")并不会运行
3、三者都会根据spark的内存情况自动缓存运算,这样即使数据量很大,也不用担心会内存溢出
4、三者都有partition的概念,如
12345678varpredata=data.repartition(24).mapPartitions{PartLine=> {PartLine.map{line=>println(“转换操作”)}}}这样对每一个分区进行操作时,就跟在操作数组一样,不但数据量比较小,而且可以方便的将map中的运算结果拿出来,如果直接用map,map中对外面的操作是无效的,如
1234567891011121314151617181920valrdd=spark.sparkContext.parallelize(Seq(("a",1), ("b",1), ("a",1)))varflag=0valtest=rdd.map{line=>println("运行")flag+=1println(flag)line._1}println(test.count)println(flag)/**运行1运行2运行330* */不使用partition时,对map之外的操作无法对map之外的变量造成影响
5、三者有许多共同的函数,如filter,排序等
6、在对DataFrame和Dataset进行操作许多操作都需要这个包进行支持
12importspark.implicits._//这里的spark是SparkSession的变量名7、DataFrame和Dataset均可使用模式匹配获取各个字段的值和类型
DataFrame:
1234567testDF.map{caseRow(col1:String,col2:Int)=>println(col1);println(col2)col1case_=>""}为了提高稳健性,最好后面有一个_通配操作,这里提供了DataFrame一个解析字段的方法
Dataset:
12345678caseclassColtest(col1:String,col2:Int)extendsSerializable//定义字段名和类型testDS.map{caseColtest(col1:String,col2:Int)=>println(col1);println(col2)col1case_=>""}
区别:
RDD:
1、RDD一般和spark mlib同时使用
2、RDD不支持sparksql操作
DataFrame:
1、与RDD和Dataset不同,DataFrame每一行的类型固定为Row,只有通过解析才能获取各个字段的值,如
12345testDF.foreach{line=>valcol1=line.getAs[String]("col1")valcol2=line.getAs[String]("col2")}每一列的值没法直接访问
2、DataFrame与Dataset一般与spark ml同时使用
3、DataFrame与Dataset均支持sparksql的操作,比如select,groupby之类,还能注册临时表/视窗,进行sql语句操作,如
12dataDF.createOrReplaceTempView("tmp")spark.sql("select ROW,DATE from tmp where DATE is not null order by DATE").show(100,false)4、DataFrame与Dataset支持一些特别方便的保存方式,比如保存成csv,可以带上表头,这样每一列的字段名一目了然
123456//保存valsaveoptions=Map("header"->"true","delimiter"->"\t","path"->"hdfs://172.xx.xx.xx:9000/test")datawDF.write.format("com.databricks.spark.csv").mode(SaveMode.Overwrite).options(saveoptions).save()//读取valoptions=Map("header"->"true","delimiter"->"\t","path"->"hdfs://172.xx.xx.xx:9000/test")valdatarDF=spark.read.options(options).format("com.databricks.spark.csv").load()利用这样的保存方式,可以方便的获得字段名和列的对应,而且分隔符(delimiter)可以自由指定
Dataset:
这里主要对比Dataset和DataFrame,因为Dataset和DataFrame拥有完全相同的成员函数,区别只是每一行的数据类型不同
DataFrame也可以叫Dataset[Row],每一行的类型是Row,不解析,每一行究竟有哪些字段,各个字段又是什么类型都无从得知,只能用上面提到的getAS方法或者共性中的第七条提到的模式匹配拿出特定字段
而Dataset中,每一行是什么类型是不一定的,在自定义了case class之后可以很自由的获得每一行的信息
123456789101112131415caseclassColtest(col1:String,col2:Int)extendsSerializable//定义字段名和类型/**rdd("a", 1)("b", 1)("a", 1)* */valtest:Dataset[Coltest]=rdd.map{line=>Coltest(line._1,line._2)}.toDStest.map{line=>println(line.col1)println(line.col2)}可以看出,Dataset在需要访问列中的某个字段时是非常方便的,然而,如果要写一些适配性很强的函数时,如果使用Dataset,行的类型又不确定,可能是各种case class,无法实现适配,这时候用DataFrame即Dataset[Row]就能比较好的解决问题
转化:
RDD、DataFrame、Dataset三者有许多共性,有各自适用的场景常常需要在三者之间转换
DataFrame/Dataset转RDD:
这个转换很简单
12valrdd1=testDF.rddvalrdd2=testDS.rddRDD转DataFrame:
1234importspark.implicits._valtestDF=rdd.map {line=>(line._1,line._2)}.toDF("col1","col2")一般用元组把一行的数据写在一起,然后在toDF中指定字段名
RDD转Dataset:
12345importspark.implicits._caseclassColtest(col1:String,col2:Int)extendsSerializable//定义字段名和类型valtestDS=rdd.map {line=>Coltest(line._1,line._2)}.toDS可以注意到,定义每一行的类型(case class)时,已经给出了字段名和类型,后面只要往case class里面添加值即可
Dataset转DataFrame:
这个也很简单,因为只是把case class封装成Row
12importspark.implicits._valtestDF=testDS.toDFDataFrame转Dataset:
123importspark.implicits._caseclassColtest(col1:String,col2:Int)extendsSerializable//定义字段名和类型valtestDS=testDF.as[Coltest]这种方法就是在给出每一列的类型后,使用as方法,转成Dataset,这在数据类型是DataFrame又需要针对各个字段处理时极为方便
特别注意:
在使用一些特殊的操作时,一定要加上 import spark.implicits._ 不然toDF、toDS无法使用
RDD
优点:
- 编译时类型安全
编译时就能检查出类型错误- 面向对象的编程风格
直接通过类名点的方式来操作数据缺点:
- 序列化和反序列化的性能开销
无论是集群间的通信, 还是IO操作都需要对对象的结构和数据进行序列化和反序列化.- GC的性能开销
频繁的创建和销毁对象, 势必会增加GCimport org.apache.spark.sql.SQLContext import org.apache.spark.{SparkConf, SparkContext} object Run { def main(args: Array[String]) { val conf = new SparkConf().setAppName("test").setMaster("local") val sc = new SparkContext(conf) sc.setLogLevel("WARN") val sqlContext = new SQLContext(sc) /** * id age * 1 30 * 2 29 * 3 21 */ case class Person(id: Int, age: Int) val idAgeRDDPerson = sc.parallelize(Array(Person(1, 30), Person(2, 29), Person(3, 21))) // 优点1 // idAge.filter(_.age > "") // 编译时报错, int不能跟String比 // 优点2 idAgeRDDPerson.filter(_.age > 25) // 直接操作一个个的person对象 } }DataFrame
DataFrame引入了schema和off-heap
schema : RDD每一行的数据, 结构都是一样的. 这个结构就存储在schema中. Spark通过schame就能够读懂数据, 因此在通信和IO时就只需要序列化和反序列化数据, 而结构的部分就可以省略了.
off-heap : 意味着JVM堆以外的内存, 这些内存直接受操作系统管理(而不是JVM)。Spark能够以二进制的形式序列化数据(不包括结构)到off-heap中, 当要操作数据时, 就直接操作off-heap内存. 由于Spark理解schema, 所以知道该如何操作.
off-heap就像地盘, schema就像地图, Spark有地图又有自己地盘了, 就可以自己说了算了, 不再受JVM的限制, 也就不再收GC的困扰了.
通过schema和off-heap, DataFrame解决了RDD的缺点, 但是却丢了RDD的优点. DataFrame不是类型安全的, API也不是面向对象风格的.
import org.apache.spark.sql.types.{DataTypes, StructField, StructType} import org.apache.spark.sql.{Row, SQLContext} import org.apache.spark.{SparkConf, SparkContext} object Run { def main(args: Array[String]) { val conf = new SparkConf().setAppName("test").setMaster("local") val sc = new SparkContext(conf) sc.setLogLevel("WARN") val sqlContext = new SQLContext(sc) /** * id age * 1 30 * 2 29 * 3 21 */ val idAgeRDDRow = sc.parallelize(Array(Row(1, 30), Row(2, 29), Row(4, 21))) val schema = StructType(Array(StructField("id", DataTypes.IntegerType), StructField("age", DataTypes.IntegerType))) val idAgeDF = sqlContext.createDataFrame(idAgeRDDRow, schema) // API不是面向对象的 idAgeDF.filter(idAgeDF.col("age") > 25) // 不会报错, DataFrame不是编译时类型安全的 idAgeDF.filter(idAgeDF.col("age") > "") } }DataSet
DataSet结合了RDD和DataFrame的优点, 并带来的一个新的概念Encoder
当序列化数据时, Encoder产生字节码与off-heap进行交互, 能够达到按需访问数据的效果, 而不用反序列化整个对象. Spark还没有提供自定义Encoder的API, 但是未来会加入.
下面看DataFrame和DataSet在2.0.0-preview中的实现
下面这段代码, 在1.6.x中创建的是DataFrame
// 上文DataFrame示例中提取出来的 val idAgeRDDRow = sc.parallelize(Array(Row(1, 30), Row(2, 29), Row(4, 21))) val schema = StructType(Array(StructField("id", DataTypes.IntegerType), StructField("age", DataTypes.IntegerType))) val idAgeDF = sqlContext.createDataFrame(idAgeRDDRow, schema)但是同样的代码在2.0.0-preview中, 创建的虽然还叫DataFrame
// sqlContext.createDataFrame(idAgeRDDRow, schema) 方法的实现, 返回值依然是DataFrame def createDataFrame(rowRDD: RDD[Row], schema: StructType): DataFrame = { sparkSession.createDataFrame(rowRDD, schema) }但是其实却是DataSet, 因为DataFrame被声明为Dataset[Row]
package object sql { // ...省略了不相关的代码 type DataFrame = Dataset[Row] }因此当我们从1.6.x迁移到2.0.0的时候, 无需任何修改就直接用上了DataSet.
下面是一段DataSet的示例代码
import org.apache.spark.sql.types.{DataTypes, StructField, StructType} import org.apache.spark.sql.{Row, SQLContext} import org.apache.spark.{SparkConf, SparkContext} object Test { def main(args: Array[String]) { val conf = new SparkConf().setAppName("test").setMaster("local") // 调试的时候一定不要用local[*] val sc = new SparkContext(conf) val sqlContext = new SQLContext(sc) import sqlContext.implicits._ val idAgeRDDRow = sc.parallelize(Array(Row(1, 30), Row(2, 29), Row(4, 21))) val schema = StructType(Array(StructField("id", DataTypes.IntegerType), StructField("age", DataTypes.IntegerType))) // 在2.0.0-preview中这行代码创建出的DataFrame, 其实是DataSet[Row] val idAgeDS = sqlContext.createDataFrame(idAgeRDDRow, schema) // 在2.0.0-preview中, 还不支持自定的Encoder, Row类型不行, 自定义的bean也不行 // 官方文档也有写通过bean创建Dataset的例子,但是我运行时并不能成功 // 所以目前需要用创建DataFrame的方法, 来创建DataSet[Row] // sqlContext.createDataset(idAgeRDDRow) // 目前支持String, Integer, Long等类型直接创建Dataset Seq(1, 2, 3).toDS().show() sqlContext.createDataset(sc.parallelize(Array(1, 2, 3))).show() } }
RDD和DataFrame

上图直观地体现了DataFrame和RDD的区别。左侧的RDD[Person]虽然以Person为类型参数,但Spark框架本身不了解Person类的内部结构。而右侧的DataFrame却提供了详细的结构信息,使得Spark SQL可以清楚地知道该数据集中包含哪些列,每列的名称和类型各是什么。DataFrame多了数据的结构信息,即schema。RDD是分布式的Java对象的集合。DataFrame是分布式的Row对象的集合。DataFrame除了提供了比RDD更丰富的算子以外,更重要的特点是提升执行效率、减少数据读取以及执行计划的优化,比如filter下推、裁剪等。
提升执行效率
RDD API是函数式的,强调不变性,在大部分场景下倾向于创建新对象而不是修改老对象。这一特点虽然带来了干净整洁的API,却也使得Spark应用程序在运行期倾向于创建大量临时对象,对GC造成压力。在现有RDD API的基础之上,我们固然可以利用mapPartitions方法来重载RDD单个分片内的数据创建方式,用复用可变对象的方式来减小对象分配和GC的开销,但这牺牲了代码的可读性,而且要求开发者对Spark运行时机制有一定的了解,门槛较高。另一方面,Spark SQL在框架内部已经在各种可能的情况下尽量重用对象,这样做虽然在内部会打破了不变性,但在将数据返回给用户时,还会重新转为不可变数据。利用 DataFrame API进行开发,可以免费地享受到这些优化效果。
减少数据读取
分析大数据,最快的方法就是 ——忽略它。这里的“忽略”并不是熟视无睹,而是根据查询条件进行恰当的剪枝。
上文讨论分区表时提到的分区剪 枝便是其中一种——当查询的过滤条件中涉及到分区列时,我们可以根据查询条件剪掉肯定不包含目标数据的分区目录,从而减少IO。
对于一些“智能”数据格 式,Spark SQL还可以根据数据文件中附带的统计信息来进行剪枝。简单来说,在这类数据格式中,数据是分段保存的,每段数据都带有最大值、最小值、null值数量等 一些基本的统计信息。当统计信息表名某一数据段肯定不包括符合查询条件的目标数据时,该数据段就可以直接跳过(例如某整数列a某段的最大值为100,而查询条件要求a > 200)。
此外,Spark SQL也可以充分利用RCFile、ORC、Parquet等列式存储格式的优势,仅扫描查询真正涉及的列,忽略其余列的数据。
执行优化

为了说明查询优化,我们来看上图展示的人口数据分析的示例。图中构造了两个DataFrame,将它们join之后又做了一次filter操作。如果原封不动地执行这个执行计划,最终的执行效率是不高的。因为join是一个代价较大的操作,也可能会产生一个较大的数据集。如果我们能将filter下推到 join下方,先对DataFrame进行过滤,再join过滤后的较小的结果集,便可以有效缩短执行时间。而Spark SQL的查询优化器正是这样做的。简而言之,逻辑查询计划优化就是一个利用基于关系代数的等价变换,将高成本的操作替换为低成本操作的过程。
得到的优化执行计划在转换成物 理执行计划的过程中,还可以根据具体的数据源的特性将过滤条件下推至数据源内。最右侧的物理执行计划中Filter之所以消失不见,就是因为溶入了用于执行最终的读取操作的表扫描节点内。
对于普通开发者而言,查询优化 器的意义在于,即便是经验并不丰富的程序员写出的次优的查询,也可以被尽量转换为高效的形式予以执行。
RDD和DataSet
DataSet以Catalyst逻辑执行计划表示,并且数据以编码的二进制形式被存储,不需要反序列化就可以执行sorting、shuffle等操作。
DataSet创立需要一个显式的Encoder,把对象序列化为二进制,可以把对象的scheme映射为Spark
SQl类型,然而RDD依赖于运行时反射机制。
通过上面两点,DataSet的性能比RDD的要好很多,可以参见[3]
DataFrame和DataSet
Dataset可以认为是DataFrame的一个特例,主要区别是Dataset每一个record存储的是一个强类型值而不是一个Row。因此具有如下三个特点:
DataSet可以在编译时检查类型
并且是面向对象的编程接口。用wordcount举例:
//DataFrame
// Load a text file and interpret each line as a java.lang.String
val ds = sqlContext.read.text("/home/spark/1.6/lines").as[String]
val result = ds
.flatMap(_.split(" ")) // Split on whitespace
.filter(_ != "") // Filter empty words
.toDF() // Convert to DataFrame to perform aggregation / sorting
.groupBy($"value") // Count number of occurences of each word
.agg(count("*") as "numOccurances")
.orderBy($"numOccurances" desc) // Show most common words first
//DataSet,完全使用scala编程,不要切换到DataFrame
val wordCount =
ds.flatMap(_.split(" "))
.filter(_ != "")
.groupBy(_.toLowerCase()) // Instead of grouping on a column expression (i.e. $"value") we pass a lambda function
.count()
后面版本DataFrame会继承DataSet,DataFrame是面向Spark SQL的接口。
DataFrame和DataSet可以相互转化,df.as[ElementType]这样可以把DataFrame转化为DataSet,ds.toDF()这样可以把DataSet转化为DataFrame。
参考
[1] Spark SQL结构化分析

浙公网安备 33010602011771号