大三下每日打卡007

把pcl配置进visual studio2022了,非常麻烦,下面是我用欧式聚类算法得到的效果图

 

1. 安装 PCL
首先,确保您已经正确安装了 PCL。您可以通过以下几种方式进行安装:

通过 PCL 官网安装:下载并安装 PCL。
通过 vcpkg 安装:如果您熟悉 vcpkg,可以使用以下命令安装 PCL:
bash
复制
编辑
vcpkg install pcl
2. 创建 Visual Studio 项目
打开 Visual Studio,点击 "Create a new project"。
选择 "Console App" 模板,确保选择 C++ 语言。
为项目命名并选择存储位置。
3. 配置项目以使用 PCL 库
a. 配置包含目录
右键点击项目,选择 "Properties"。
在 "Configuration Properties" 下,选择 "VC++ Directories"。
在 "Include Directories" 中,添加 PCL 的 include 目录路径。假设 PCL 安装路径为 C:\Program Files\PCL 1.11.1,则包含目录为:
makefile
复制
编辑
C:\Program Files\PCL 1.11.1\include\pcl-1.11
b. 配置库目录
在 "Configuration Properties" 下,选择 "Linker" -> "General"。
在 "Additional Library Directories" 中,添加 PCL 的 lib 目录路径:
vbnet
复制
编辑
C:\Program Files\PCL 1.11.1\lib
c. 配置库文件
仍在 "Linker" 下,选择 "Input"。
在 "Additional Dependencies" 中添加 PCL 所需的库。例如,添加:
vbnet
复制
编辑
pcl_common.lib
pcl_io.lib
pcl_filters.lib
pcl_features.lib
pcl_segmentation.lib
pcl_visualization.lib
pcl_kdtree.lib
pcl_sample_consensus.lib
freeglut.lib
opengl32.lib
注意:不同的 PCL 版本和安装方式可能会有不同的库文件,确保添加与您的安装匹配的库。
d. 配置 OpenGL(可选)
PCL 使用 OpenGL 进行可视化,因此您还需要配置 OpenGL 相关的库:

在 "Additional Dependencies" 中添加 freeglut.lib 和 opengl32.lib(这些库通常随 PCL 一起安装)。
4. 编写和添加代码
将您的代码(例如您提供的代码)添加到项目中。

右键点击项目,选择 "Add" -> "New Item" -> "C++ File (.cpp)"。
将您的代码粘贴到新创建的 .cpp 文件中。
如果需要,还可以添加 PCD 文件路径,确保文件可以被读取。
5. 编译并运行
点击 "Build" -> "Build Solution"(或按 Ctrl+Shift+B)来编译项目。
如果一切配置正确,您应该能够编译并运行代码。
6. 确保 PCD 文件存在
确保您代码中的 table_scene_lms400.pcd 文件存在,并且路径正确。可以将 PCD 文件放置在项目的同一目录下,或者使用完整的文件路径,如:

cpp
复制
编辑
reader.read("C:\\path_to_pcd_file\\table_scene_lms400.pcd", *cloud);
小结
通过上述步骤,您可以在 Visual Studio 中手动配置项目以使用 PCL,而无需 CMake。只需确保正确配置包含目录、库目录和依赖项,您就能成功运行代码。如果遇到任何问题,随时告诉我,我会帮助您解决!

 

PATH=D:\tool\PCL 1.12.0\bin;D:\tool\PCL 1.12.0\3rdParty\VTK\bin;D:\tool\PCL 1.12.0\3rdParty\FLANN\bin;D:\tool\PCL 1.12.0\3rdParty\OpenNI2\Tools;D:\tool\PCL 1.12.0\3rdParty\Qhull\bin

D:\tool\PCL 1.13.0\lib
D:\tool\PCL 1.13.0\3rdParty\Boost\lib
D:\tool\PCL 1.13.0\3rdParty\FLANN\lib
D:\tool\PCL 1.13.0\3rdParty\OpenNI2\Lib
D:\tool\PCL 1.13.0\3rdParty\Qhull\lib
D:\tool\PCL 1.13.0\3rdParty\VTK\lib



BOOST_USE_WINDOWS_H
NOMINMAX
_CRT_SECURE_NO_DEPRECATE




D:\tool\PCL 1.13.0\include\pcl-1.13
D:\tool\PCL 1.13.0\3rdParty\Boost\include\boost-1_80
D:\tool\PCL 1.13.0\3rdParty\Eigen\eigen3
D:\tool\PCL 1.13.0\3rdParty\FLANN\include
D:\tool\PCL 1.13.0\3rdParty\OpenNI2\Include
D:\tool\PCL 1.13.0\3rdParty\Qhull\include
D:\tool\PCL 1.13.0\3rdParty\VTK\include\vtk-9.2




#include <pcl/ModelCoefficients.h>
#include <pcl/point_types.h>
#include <pcl/io/pcd_io.h>
#include <pcl/filters/extract_indices.h>
#include <pcl/filters/voxel_grid.h>
#include <pcl/features/normal_3d.h>
#include <pcl/kdtree/kdtree.h>
#include <pcl/sample_consensus/method_types.h>
#include <pcl/sample_consensus/model_types.h>
#include <pcl/segmentation/sac_segmentation.h>
#include <pcl/segmentation/extract_clusters.h>
#include <pcl/visualization/pcl_visualizer.h>

bool isPushSpace = false;

// 键盘事件
void keyboard_event_occurred(const pcl::visualization::KeyboardEvent& event, void* nothing)
{
    if (event.getKeySym() == "space" && event.keyDown())
    {
        isPushSpace = true;
    }
}

int main(int argc, char** argv)
{
    // 从PCD文件中读取点云数据
    pcl::PCDReader reader;
    pcl::PointCloud<pcl::PointXYZ>::Ptr cloud(new pcl::PointCloud<pcl::PointXYZ>), cloud_f(new pcl::PointCloud<pcl::PointXYZ>);
    reader.read("C:\\Users\\huxiang\\Downloads\\table_scene_lms400.pcd", *cloud);
    std::cout << "PointCloud before filtering has: " << cloud->points.size() << " data points." << std::endl;

    pcl::visualization::PCLVisualizer viewer("Cluster Extraction");
    // 注册键盘事件
    viewer.registerKeyboardCallback(&keyboard_event_occurred, (void*)NULL);
    int v1(1);
    int v2(2);
    viewer.createViewPort(0, 0, 0.5, 1, v1);
    viewer.createViewPort(0.5, 0, 1, 1, v2);

    // 创建滤波对象: 使用下采样,叶子的大小为 1cm
    pcl::VoxelGrid<pcl::PointXYZ> vg;
    pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_filtered(new pcl::PointCloud<pcl::PointXYZ>);
    vg.setInputCloud(cloud);
    vg.setLeafSize(0.01f, 0.01f, 0.01f);
    vg.filter(*cloud_filtered);
    std::cout << "PointCloud after filtering has: " << cloud_filtered->points.size() << " data points." << std::endl;

    viewer.addPointCloud(cloud, "cloud1", v1);
    viewer.addPointCloud(cloud_filtered, "cloud2", v2);
    // 渲染10秒再继续
    viewer.spinOnce(10000);

    // 创建平面分割对象
    pcl::SACSegmentation<pcl::PointXYZ> seg;
    pcl::PointIndices::Ptr inliers(new pcl::PointIndices);
    pcl::ModelCoefficients::Ptr coefficients(new pcl::ModelCoefficients);
    pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_plane(new pcl::PointCloud<pcl::PointXYZ>());
    pcl::PCDWriter writer;
    seg.setOptimizeCoefficients(true);
    seg.setModelType(pcl::SACMODEL_PLANE);
    seg.setMethodType(pcl::SAC_RANSAC);
    seg.setMaxIterations(100);
    seg.setDistanceThreshold(0.02);

    // 把点云中所有的平面全部过滤掉,重复过滤,直到点云数量小于原来的0.3倍
    int i = 0, nr_points = (int)cloud_filtered->points.size();
    while (cloud_filtered->points.size() > 0.3 * nr_points)
    {
        // Segment the largest planar component from the remaining cloud
        seg.setInputCloud(cloud_filtered);
        seg.segment(*inliers, *coefficients);
        if (inliers->indices.size() == 0)
        {
            std::cout << "Could not estimate a planar model for the given dataset." << std::endl;
            break;
        }

        // Extract the planar inliers from the input cloud
        pcl::ExtractIndices<pcl::PointXYZ> extract;
        extract.setInputCloud(cloud_filtered);
        extract.setIndices(inliers);
        extract.setNegative(false);

        // Write the planar inliers to disk
        extract.filter(*cloud_plane);
        std::cout << "PointCloud representing the planar component: " << cloud_plane->points.size() << " data points." << std::endl;

        // Remove the planar inliers, extract the rest
        extract.setNegative(true);
        extract.filter(*cloud_f);

        // 更新显示点云
        viewer.updatePointCloud(cloud_filtered, "cloud1");
        viewer.updatePointCloud(cloud_f, "cloud2");
        // 渲染3秒再继续
        viewer.spinOnce(3000);

        cloud_filtered = cloud_f;
    }

    viewer.removePointCloud("cloud2", v2);

    // 创建KdTree对象作为搜索方法
    pcl::search::KdTree<pcl::PointXYZ>::Ptr tree(new pcl::search::KdTree<pcl::PointXYZ>);
    tree->setInputCloud(cloud_filtered);

    std::vector<pcl::PointIndices> cluster_indices;
    pcl::EuclideanClusterExtraction<pcl::PointXYZ> ec;
    ec.setClusterTolerance(0.02); // 2cm
    ec.setMinClusterSize(100);
    ec.setMaxClusterSize(25000);
    ec.setSearchMethod(tree);
    ec.setInputCloud(cloud_filtered);
    // 聚类抽取结果保存在一个数组中,数组中每个元素代表抽取的一个组件点云的下标
    ec.extract(cluster_indices);

    // 遍历抽取结果,将其显示并保存
    int j = 0;
    for (std::vector<pcl::PointIndices>::const_iterator it = cluster_indices.begin(); it != cluster_indices.end(); ++it)
    {
        // 创建临时保存点云族的点云
        pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_cluster(new pcl::PointCloud<pcl::PointXYZ>);
        // 通过下标,逐个填充
        for (std::vector<int>::const_iterator pit = it->indices.begin(); pit != it->indices.end(); pit++)
            cloud_cluster->points.push_back(cloud_filtered->points[*pit]);

        // 设置点云属性
        cloud_cluster->width = cloud_cluster->points.size();
        cloud_cluster->height = 1;
        cloud_cluster->is_dense = true;

        std::cout << "当前聚类 " << j << " 包含的点云数量: " << cloud_cluster->points.size() << " data points." << std::endl;
        std::stringstream ss;
        ss << "cloud_cluster_" << j << ".pcd";
        writer.write<pcl::PointXYZ>(ss.str(), *cloud_cluster, false);

        // 显示, 随机设置不同颜色,以区分不同的聚类
        pcl::visualization::PointCloudColorHandlerCustom<pcl::PointXYZ> cluster_color(cloud_cluster, rand() * 100 + j * 80, rand() * 50 + j * 90, rand() * 200 + j * 100);
        viewer.addPointCloud(cloud_cluster, cluster_color, ss.str(), v2);

        j++;
    }

    while (!viewer.wasStopped())
    {
        viewer.spinOnce();
    }
    return (0);
}


欧式聚类算法(Euclidean Clustering)是一种将点云数据分割成不同聚类(簇)的算法。它是点云分割中的一种常用方法,旨在将距离比较近的点分为同一簇,从而识别出不同的物体或结构。这个算法主要适用于包含较小噪音和具有一定距离差异的点云数据。基本思想:
(1)选择一个种子点(Seed Point)作为当前簇的起始点。
(2) 遍历所有未分类的点,计算它们与种子点的距离。如果距离小于设定的阈值,将其归为同一簇。
(3) 对于同一簇中的点,重复步骤2,将与当前簇内任一点距离小于阈值的点加入簇。
(4) 切换到下一个未分类的点,作为新的种子点,继续重复步骤2和3。
(5) 当所有点都被分类为某个簇,聚类过程结束。

 

posted @ 2025-03-03 08:30  软件拓荒人  阅读(33)  评论(0)    收藏  举报