tsp动态规划递归解法c++

 这里使用二进制位表示城市集合,思路看书去吧

#include <iostream>
#include <cstdlib>
#include <ctime>
#include <iomanip>
#include <bitset>
using namespace std;

#define N 4//矩阵维度
#define MAX 0x7f7f7f7f

int distances[N][N] = {0};//距离
int path[N][1 << (N - 1)] = {0};//路径
int dp[N][1 << (N - 1)] = {0};//dp数组
void creatDistances();
void printDistances();
int removeCity(int j, int k)
{ // 从j二进制表示的城市集合中去除k号城市(k位设为0)
    return j - (1 << (k - 1));
}
void printPath(int path[][1 << (N - 1)], int i, int j)
{ // 打印路线 i为出发城市编号 j为剩下城市组成的集合
    if (j != 0)
    {
        cout << i << " -> ";
        int next_city = path[i][j];
        printPath(path, next_city, removeCity(j, next_city));
    }
    else
    {
        cout << i << " -> " << 0;
    }
}

int TSP(int v, int s)
{

    if (dp[v][s] != 0)
        return dp[v][s];
    int min = MAX;
    for (int k = 1; k < N; k++)
    {
        if ((s >> (k - 1)) & 1)//如果城市k在集合里
        {
            // cout << "v:" << v << " s:" << bitset<N - 1>(s) << " k:" << k << endl;
            int t = TSP(k, removeCity(s, k));//通过k到达集合的最短路径
            if (t + distances[v][k] < min)
            {
                min = t + distances[v][k];
                path[v][s] = k;
            }
        }
    }
    dp[v][s] = min;
    return min;
}
int main()
{
    // 课本例题
    //int x[N][N] = {{MAX, 3, 6, 7},
    //               {5, MAX, 2, 3},
    //               {6, 4, MAX, 2},
    //               {3, 7, 5, MAX}};
    // for (int i = 0; i < N; i++)
    //     for (int j = 0; j < N; j++)
    //         distances[i][j] = x[i][j];

    // 随机初始化distances[N][N]

    creatDistances();

    // 初始化i->0的距离
    for (int i = 0; i < N; i++)
        dp[i][0] = distances[i][0];
    // 输出结果
    printDistances();
    cout << "最短距离为:" << TSP(0, (1 << (N - 1)) - 1) << endl;
    printPath(path, 0, (1 << (N - 1)) - 1);
    system("pause");
    return 0;
}
void creatDistances()
{
    // 随机初始化distances[N][N]
    srand((unsigned int)time(NULL));
    for (int i = 0; i < N; i++)
    {
        for (int j = 0; j < N; j++)
        {
            if (i == j)
                distances[i][j] = MAX;
            else
            {
                int temp = rand() % 10;
                while (temp == 0)
                {
                    temp = rand();
                }
                distances[i][j] = temp % 10;
            }
        }
    }
}
void printDistances()
{
    cout << "代价矩阵为:" << endl;
    for (int i = 0; i < N; i++)
    {
        for (int j = 0; j < N; j++)
        {
            if (distances[i][j] == MAX)
                cout << setw(5) << "INF"
                     << " ";
            else
                cout << setw(5) << distances[i][j] << " ";
        }
        cout << endl;
    }
}

posted @ 2024-05-30 11:18  CV小能手chh  阅读(7)  评论(0)    收藏  举报  来源