1、pom.xml代码
<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>
<groupId>com.hduser</groupId>
<artifactId>hduser</artifactId>
<version>1.0-SNAPSHOT</version>
<dependencies>
<dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-common</artifactId>
<version>3.2.1</version>
</dependency>
<dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-client</artifactId>
<version>3.2.1</version>
</dependency>
<dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-hdfs</artifactId>
<version>3.2.1</version>
</dependency>
<!-- https://mvnrepository.com/artifact/org.apache.logging.log4j/log4j-core -->
<dependency>
<groupId>org.apache.logging.log4j</groupId>
<artifactId>log4j-core</artifactId>
<version>2.17.1</version>
</dependency>
</dependencies>
</project>
2、log4j.properties文件内容

# Set root logger level to DEBUG and its only appender to A1.
log4j.rootLogger=DEBUG, A1
# A1 is set to be a ConsoleAppender.
log4j.appender.A1=org.apache.log4j.ConsoleAppender
# A1 uses PatternLayout.
log4j.appender.A1.layout=org.apache.log4j.PatternLayout
log4j.appender.A1.layout.ConversionPattern=%-4r [%t] %-5p %c %x - %m%n
3、WordCountMapper代码
package com.example;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.io.Text;
import java.io.IOException;
public class WordCountMapper extends Mapper<LongWritable,Text, Text, IntWritable> {
@Override
protected void map(LongWritable key,Text value,Mapper<LongWritable,Text,Text,IntWritable>.Context context) throws IOException,InterruptedException{
//接收传入进来的一行文本
String line = value.toString();
//将这行内容按照分隔符切割
String[] words = line.split(" ");
//遍历数组,没出现一个单词就标记为数组1
for(String word:words){
//使用context,把Map阶段处理的数据发给Reduce阶段作为输入数据
context.write(new Text(word),new IntWritable(1));
}
}
}
4、WordCountReducer代码
package com.example;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;
import java.io.IOException;
public class WordCountReducer extends Reducer<Text, IntWritable, Text, IntWritable> {
@Override
protected void reduce(Text key, Iterable<IntWritable> values, Reducer<Text, IntWritable, Text, IntWritable>.Context context) throws IOException, InterruptedException {
System.out.println("reduce called key: " + key.toString());
// 定义一个计数器
int count = 0;
// 遍历一组迭代器,把每一个数量1累加起来构成单词的总数
for (IntWritable iw : values) {
System.out.println(iw.get());
count += iw.get();
}
context.write(key, new IntWritable(count));
}
}
5、WordCountCombiner代码
package com.example;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;
import java.io.IOException;
public class WordCountCombiner extends Reducer<Text, IntWritable, Text, IntWritable> {
@Override
protected void reduce(Text key, Iterable<IntWritable> values, Reducer<Text, IntWritable, Text, IntWritable>.Context context) throws IOException, InterruptedException {
// 局部汇总
int count = 0;
for (IntWritable v : values) {
count += v.get();
}
context.write(key, new IntWritable(count));
}
}
6、WordCountDriver代码
package com.example;
import com.example.WordCountCombiner;
import com.example.WordCountMapper;
import com.example.WordCountReducer;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.util.GenericOptionsParser;
import java.io.IOException;
public class WordCountDriver {
public static void main(String[] args) throws IOException, InterruptedException, ClassNotFoundException {
// 主类中需要设置本地hadoop的环境变量
//System.setProperty("hadoop.home.dir", "D:/hadoop/hadoop-3.2.1");
// 通过Job来封装本地MR的相关信息
Configuration conf = new Configuration();
//读取args参数
// 新增读取参数的代码
String[] otherArgs = (new GenericOptionsParser(conf, args)).getRemainingArgs();
if (otherArgs.length < 2) {
System.err.println("Usage: wordcount <in> [<in>...] <out>");
System.exit(2);
}
// 配置MR运行模式,使用local表示本地模式,可以省略
conf.set("mapreduce.framework.name", "local");
Job wcjob = Job.getInstance(conf);
// 指定MR Job jar包运行主类
wcjob.setJarByClass(WordCountDriver.class);
// 指定本次MR 所有的Mapper Reducer类
wcjob.setMapperClass(WordCountMapper.class);
wcjob.setReducerClass(WordCountReducer.class);
// Combiner 用于整合数据,此处可写可不写
wcjob.setCombinerClass(WordCountCombiner.class);
// 设置业务逻辑Mapper类输出的key和value的数据类型
wcjob.setMapOutputKeyClass(Text.class);
wcjob.setMapOutputValueClass(IntWritable.class);
// 设置业务逻辑Reducer类的输出key和value的数据类型
wcjob.setOutputKeyClass(Text.class);
wcjob.setOutputValueClass(IntWritable.class);
// 使用本地模式指定要处理的数据所在的位置
FileInputFormat.addInputPath(wcjob, new Path(otherArgs[otherArgs.length - 2]));
FileOutputFormat.setOutputPath(wcjob, new Path(otherArgs[otherArgs.length - 1]));
// 提交程序并且监督打印程序执行情况
boolean res = wcjob.waitForCompletion(true);
System.exit(res ? 0 : 1);
}
}