Loading

LeetCode-动态规划

动态规划不在于记住dp table里填什么,而在于找到subproblems。

53. Maximum Subarray 最大子序列和

https://leetcode.com/problems/maximum-subarray/

题目:给定整数数组nums,查找具有最大和的连续子数组(至少包含一个数字)并返回其和。

思路:在[-2,1,-3,4,-1,2,1,-5,4]对应的dp table中,index=3对应的subproblem是从index=0到index=3这个子列的最大子序列和是多少。对于每个subproblem,有两种选择,一种仅选择当前子列的最后一位,一种是选择之前的最大值加上当前值,选择二者中较大的那个。在dp table中表示就是[-2,1,-2,4,3,5,6,1,5],最大值为6。

class Solution {
    public int maxSubArray(int[] nums) {
        int res = Integer.MIN_VALUE;
        int cur = 0;
        for(int num : nums){
            cur = Math.max(cur+num, num);
            res = Math.max(res, cur);
        }
        return res;
    }
}
View Code

72. Edit Distance 最短编辑距离

https://leetcode.com/problems/edit-distance/

题目:给定两个单词Word 1和Word2,找到将word 1转换为Word2所需的最小操作数。允许对一个单词执行以下3种操作:插入字符、删除字符、替换字符。

思路:

class Solution {
    public int minDistance(String word1, String word2) {
        int a = word1.length();
        int b = word2.length();
        int[][] dp = new int[b+1][a+1];
        dp[0][0] = 0;
        for(int i = 1; i < a+1; i++) {
            dp[0][i] = i;
        }
        for(int i = 1; i < b+1; i++) {
            dp[i][0] = i;
        }
        for(int j = 1; j < b+1; j++) {
            for(int i = 1; i < a+1; i++) {
                if(word1.charAt(i-1) == word2.charAt(j-1)){
                    dp[j][i] = dp[j-1][i-1];
                } else {
                    int temp = Math.min(dp[j-1][i], dp[j-1][i-1]);
                    dp[j][i] = Math.min(temp, dp[j][i-1]) + 1;
                }
            }
        }
        return dp[b][a];
    }
}
View Code

120. Triangle 三角形

https://leetcode.com/problems/triangle/

题目:给定一个三角形,从上到下寻找最小路径和。每一步您都可以移动到下面行中的相邻数字。

思路:

class Solution {
    public int minimumTotal(List<List<Integer>> triangle) {
        if(triangle == null || triangle.size() == 0) return 0;
        
        int m = triangle.size();
        int n = triangle.get(m-1).size();
        int[] M = new int[n];
        // last row -> M
        for(int i = 0; i < n; i++) {
            M[i] = triangle.get(m-1).get(i);
        }
        
        for(int i = n-2; i >= 0; i--) {
            List<Integer> cur = triangle.get(i);
            for(int j = 0; j < cur.size(); j++) {
                M[j] = Math.min(M[j], M[j+1]) + cur.get(j);
            }
            for(int num : M) {
                System.out.print(num + " ");
            }
            System.out.println();
        }
        
        return M[0];
    }
}
View Code

152. Maximum Product Subarray 最大乘积子阵

https://leetcode.com/problems/maximum-product-subarray/

题目:给定整数数组num,在具有最大乘积的数组(至少包含一个数字)中查找连续子数组。

思路:

class Solution {
    public int maxProduct(int[] nums) {
        int n = nums.length;
        if(n == 0){
            return 0;
        }
        int[] maxdp = new int[n];
        int[] mindp = new int[n];
        maxdp[0] = nums[0];
        mindp[0] = nums[0];
        int maxProduct = nums[0];
        for(int i = 1; i < n; i++){
            if(nums[i] > 0){
                maxdp[i] = Math.max(maxdp[i - 1] * nums[i], nums[i]);
                mindp[i] = Math.min(mindp[i - 1] * nums[i], nums[i]);
            }
            else{
                maxdp[i] = Math.max(mindp[i - 1] * nums[i], nums[i]);
                mindp[i] = Math.min(maxdp[i - 1] * nums[i], nums[i]);
            }
            maxProduct = Math.max(maxProduct, maxdp[i]);
        }
        return maxProduct;
    }
}
View Code

300. Longest Increasing Subsequence 最长上升子序列

https://leetcode.com/problems/longest-increasing-subsequence/

题目:给定一个未排序的整数数组,找出最长上升子序列的长度。

思路:

class Solution {
    public int lengthOfLIS(int[] nums) {
        if(nums.length == 0) return 0;
        int n = nums.length;
        int[] dp = new int[n];
        dp[0] = 1;
        int max = 1, curMax = 1;
        boolean flag = false;
        for(int i = 1; i < n; i++) {
            for(int j = i-1; j >= 0; j--) {
                if(nums[i] > nums[j]) {
                    curMax = Math.max(curMax, dp[j]);
                    flag = true;
                }
            }
            if(flag) {
                dp[i] = curMax + 1;
            } else {
                dp[i] = 1;
            }
            curMax = 1;
            flag = false;
            max = Math.max(max, dp[i]);
        }
        return max;
    }
}
View Code

二分法:

class Solution {
    public int lengthOfLIS(int[] nums) {
        if (nums.length == 0) {
            return 0;
        }

        int result = 0;

        /** store tails of each increasing subsequence with different length
         *eg: 3, 5, 1, 8, 2, 12
         * 1
         * 1, 2
         * 3, 5, 8
         * 3, 5, 8, 12
         * tails = {1, 2, 8, 12}
         * */

        /** we do not care about what elements are in each subsequence, we only care about tails of them,
         * because every time we only compare with their tails to decide which subsequence could we add new item
         * and update the entire structure */
        int[] tails = new int[nums.length];

        /**(1) if x is larger than all tails, append it, increase the size by 1
         * (2) if tails[i-1] < x <= tails[i], update tails[i] */
        for (int item : nums) {
            int left = 0, right = result;

            /** Use binary search to find the correct tail for new item
             *
             * KEY POINTS: find the smallest ceiling of every new number from the existed tails and replace that
             * ceiling number with new number
             *
             * CORNER CASE: if left = right at the first iteration, so do not need to worry about the tails array
             * does not have any items */
            while (left != right) {
                int mid = (left + right) / 2;

                if (tails[mid] < item) {
                    left = mid + 1;
                }
                else {
                    right = mid;
                }
            }

            //update tails of current subsequence with length of left + 1
            tails[left] = item;

            //if updated subsequence is the longest one, increase result size by 1
            if (left == result) {
                result++;
            }
        }
        return result;
    }
}
View Code

322. Coin Change 换硬币

https://leetcode.com/problems/coin-change/

题目:你会得到不同面额的硬币和总金额。编写一个函数来计算弥补这个数量所需的最少硬币数。如果这个数额的钱不能由任何组合的硬币,返回-1。

思路:

class Solution {
    public int coinChange(int[] coins, int amount) {
        int n = coins.length;
        int[] dp = new int[amount+1];
        for(int i = 1; i < amount+1; i++) {
            dp[i] = amount+1;
        }
        dp[0] = 0;
        for (int i = 1; i <= amount; i++) {
            int temp = i;
            int cur = 0;
            for(int j = 0; j < n; j++) {
                if(coins[j] > temp) continue;
                cur = 1 + dp[temp-coins[j]];
                dp[i] = Math.min(dp[i], cur);
            }
        }
        if(dp[amount] < amount+1) {
            return dp[amount];
        } else {
            return -1;
        }
    }
}
View Code

416. Partition Equal Subset Sum 分成和相等的两个子集

https://leetcode.com/problems/partition-equal-subset-sum/

题目:给定一个只包含正整数的非空数组,请查找该数组是否可以划分为两个子集,以便两个子集中的元素之和相等。

思路:

class Solution {
    public boolean canPartition(int[] nums) {
        int n = nums.length;
        int total = 0, target = 0;
        for(int i = 0; i < n; i++) {
            total += nums[i];
        }
        if(total % 2 == 1) return false;
        target = total / 2;
        boolean[] dp = new boolean[target+1];
        for(int i = 0; i < target+1; i++) {
            dp[i] = false;
        }
        dp[0] = true;
        for(int i = 0; i < n; i++) {
            for(int j = target; j >= nums[i]; j--) {
                dp[j] = dp[j] | dp[j-nums[i]];
            }
        }
        return dp[target];
    }
}
View Code

771. Jewels and Stones 宝石和石头

https://leetcode.com/problems/jewels-and-stones/

题目:字符串J代表宝石的类型,字符串S代表你拥有的石头。S中的每一个字符都是你所拥有的一种石头。你想知道你有多少石头属于宝石。J中的字母是独立的,而J和S中的所有字符都是字母。字母区分大小写,因此“a”被认为是一种不同于“A”的石头。

思路:

class Solution {
    public int numJewelsInStones(String J, String S) {
        int jl = J.length();
        int sl = S.length();
        int[][] dp = new int[jl+1][sl+1];
        for(int i = 0; i < jl+1; i++) {
            dp[i][0] = 0;
        }
        for(int i = 0; i < sl+1; i++) {
            dp[0][i] = 0;
        }
        for(int i = 1; i < jl+1; i++) {
            int temp = 0;
            for(int j = 1; j < sl+1; j++) {
                if(S.charAt(j-1)==J.charAt(i-1)) temp++;
                dp[i][j] = temp + dp[i-1][j];
            }
        }
        return dp[jl][sl];
    }
}
View Code

 

动态规划:
// http://oj.leetcode.com/problems/triangle/ (最短路径)
http://oj.leetcode.com/problems/subsets/ (另一种形式)
http://oj.leetcode.com/problems/subsets-ii/
// http://oj.leetcode.com/problems/edit-distance/ (经典)
http://oj.leetcode.com/problems/word-break/
http://oj.leetcode.com/problems/word-break-ii/
http://oj.leetcode.com/problems/unique-binary-search-trees/ (动态规划避免递归)
http://oj.leetcode.com/problems/unique-paths-ii/
http://oj.leetcode.com/problems/scramble-string/
http://oj.leetcode.com/problems/palindrome-partitioning/
http://oj.leetcode.com/problems/palindrome-partitioning-ii/
http://oj.leetcode.com/problems/interleaving-string/
http://oj.leetcode.com/problems/distinct-subsequences/
http://oj.leetcode.com/problems/decode-ways/
http://oj.leetcode.com/problems/gray-code/
http://oj.leetcode.com/problems/minimum-path-sum/

posted @ 2019-09-27 23:36  brynchen  阅读(160)  评论(0)    收藏  举报