多线程
import threading
# 这个函数名可随便定义
def run(n):
print("current task:", n)
if __name__ == "__main__":
t1 = threading.Thread(target=run, args=("thread 1",))
t2 = threading.Thread(target=run, args=("thread 2",))
t1.start()
t2.start()
创建多进程
from multiprocessing import Process, Queue
def put(queue):
queue.put('Queue 用法')
if __name__ == '__main__':
queue = Queue()
pro = Process(target=put, args=(queue,))
pro.start()
print(queue.get())
pro.join()
#coding: utf-8
import multiprocessing
import time
def func(msg):
print("msg:", msg)
time.sleep(3)
print("end")
if __name__ == "__main__":
# 维持执行的进程总数为processes,当一个进程执行完毕后会添加新的进程进去
pool = multiprocessing.Pool(processes = 3)
for i in range(5):
msg = "hello %d" %(i)
# 非阻塞式,子进程不影响主进程的执行,会直接运行到 pool.join()
pool.apply_async(func, (msg, ))
# 阻塞式,先执行完子进程,再执行主进程
# pool.apply(func, (msg, ))
print("Mark~ Mark~ Mark~~~~~~~~~~~~~~~~~~~~~~")
# 调用join之前,先调用close函数,否则会出错。
pool.close()
# 执行完close后不会有新的进程加入到pool,join函数等待所有子进程结束
pool.join()
print("Sub-process(es) done.")
-
CPU 密集型:程序比较偏重于计算,需要经常使用CPU来运算。例如科学计算的程序,机器学习的程序等。
-
I/O 密集型:顾名思义就是程序需要频繁进行输入输出操作。爬虫程序就是典型的I/O密集型程序。
如果程序是属于CPU密集型,建议使用多进程。而多线程就更适合应用于I/O密集型程序。
posted on
浙公网安备 33010602011771号