归一化方法-Z-score
归一化方法-Z-score
Z-score 定义
z-score精确测量偏离数据点均值的标准差数。公式如下:
\(z = \frac{data\ point-mean}{standard\ deviation}\), 标准数学公式为:
\(z = \frac{x-\mu }{\sigma }\)
几个z-score相关的重要性质:
- z-score如果是正值,说明数据点高于均值;
- z-score如果是负值,说明数据点低于均值;
- z-score接近0,说明数据点接近均值;
- z-score如果高于3或者低于-3,说明数据点可能不可使用。
Z-score python实现
def normalize(data):
    for i in range(0, 3):
        data[:,i] = sp.stats.zscore(data[:,i])
    return data
data_ex  = np.array([[-2.5022,  7.8546,  5.4552],
       [-2.2184,  8.036 ,  5.5997],
       [-2.3919,  8.0438,  5.3814],
       [-2.3578,  8.0125,  5.2548],
       [-2.4651,  7.8921,  5.2071],
       [-2.3001,  7.9735,  5.3466]])
normalized_data_ex = normalize(data_ex) 
结果显示:
normalized_data_ex
array([[-1.35407489, -1.58814724,  0.62667636],
       [ 1.61071709,  0.93563646,  1.74371667],
       [-0.20179668,  1.04415638,  0.05617411],
       [ 0.15443801,  0.60868543, -0.92249234],
       [-0.9664999 , -1.06641687, -1.2912316 ],
       [ 0.75721637,  0.06608585, -0.2128432 ]])
 
                    
                     
                    
                 
                    
                
 
                
            
         
         浙公网安备 33010602011771号
浙公网安备 33010602011771号