算法dfs——二叉搜索树中最接近的值 II
901. 二叉搜索树中最接近的值 II
中文
English
给定一棵非空二叉搜索树以及一个target值,找到 BST 中最接近给定值的 k 个数。
样例
样例 1:
输入:
{1}
0.000000
1
输出:
[1]
解释:
二叉树 {1},表示如下的树结构:
1
样例 2:
输入:
{3,1,4,#,2}
0.275000
2
输出:
[1,2]
解释:
二叉树 {3,1,4,#,2},表示如下的树结构:
3
/ \
1 4
\
2
挑战
假设是一棵平衡二叉搜索树,你可以用时间复杂度低于O(n)的算法解决问题吗( n 为节点个数)?
注意事项
- 给出的target值为浮点数
- 你可以假设
k总是合理的,即k ≤ 总节点数 - 我们可以保证给出的 BST 中只有
唯一一个最接近给定值的 k 个值的集合
"""
Definition of TreeNode:
class TreeNode:
def __init__(self, val):
self.val = val
self.left, self.right = None, None
"""
class Solution:
"""
@param root: the given BST
@param target: the given target
@param k: the given k
@return: k values in the BST that are closest to the target
"""
def closestKValues(self, root, target, k):
if root is None or k == 0:
return []
nums = self.get_inorder(root)
left = self.find_lower_index(nums, target)
right = left + 1
results = []
for _ in range(k):
if (right >= len(nums)) or (left >=0 and target - nums[left] < nums[right] - target):
results.append(nums[left])
left -= 1
else:
results.append(nums[right])
right += 1
return results
def get_inorder(self, root):
result = []
stack = []
node = root
while stack or node:
if node:
stack.append(node)
node = node.left
else:
node = stack.pop()
result.append(node.val)
node = node.right
return result
def find_lower_index(self, nums, target):
"""
find the largest number < target, return the index
"""
start, end = 0, len(nums) - 1
while start + 1 < end:
mid = (start + end) // 2
if nums[mid] < target:
start = mid
else:
end = mid
if nums[end] < target:
return end
if nums[start] < target:
return start
return -1
更优的解法,todo
相关的题目:
11. 二叉查找树中搜索区间
中文
English
给定一个二叉查找树和范围[k1, k2]。按照升序返回给定范围内的节点值。
样例
样例 1:
输入:{5},6,10
输出:[]
5
它将被序列化为 {5}
没有数字介于6和10之间
样例 2:
输入:{20,8,22,4,12},10,22 输出:[12,20,22] 解释: 20 / \ 8 22 / \ 4 12 它将被序列化为 {20,8,22,4,12} [12,20,22]介于10和22之间
"""
Definition of TreeNode:
class TreeNode:
def __init__(self, val):
self.val = val
self.left, self.right = None, None
"""
class Solution:
"""
@param root: param root: The root of the binary search tree
@param k1: An integer
@param k2: An integer
@return: return: Return all keys that k1<=key<=k2 in ascending order
"""
def searchRange(self, root, k1, k2):
# write your code here
"""
# recursive solution
if not root:
return []
if root.val < k1:
return self.searchRange(root.right, k1, k2)
elif root.val > k2:
return self.searchRange(root.left, k1, k2)
else:
return self.searchRange(root.left, k1, k2) + [root.val] + \
self.searchRange(root.right, k1, k2)
"""
result = []
q = [root]
while q:
node = q.pop()
if not node:
continue
if k1 <= node.val <= k2:
result.append(node.val)
q.append(node.left)
q.append(node.right)
elif node.val < k1:
q.append(node.right)
else:
q.append(node.left)
result.sort()
return result
85. 在二叉查找树中插入节点
中文
English
给定一棵二叉查找树和一个新的树节点,将节点插入到树中。
你需要保证该树仍然是一棵二叉查找树。
样例
样例 1:
输入: tree = {}, node= 1
输出: {1}
样例解释:
在空树中插入一个点,应该插入为根节点。
样例 2:
输入: tree = {2,1,4,3}, node = 6
输出: {2,1,4,3,6}
样例解释:
如下:
2 2
/ \ / \
1 4 --> 1 4
/ / \
3 3 6
挑战
能否不使用递归?
注意事项
保证不会出现重复的值
"""
Definition of TreeNode:
class TreeNode:
def __init__(self, val):
self.val = val
self.left, self.right = None, None
"""
class Solution:
"""
@param: root: The root of the binary search tree.
@param: node: insert this node into the binary search tree
@return: The root of the new binary search tree.
"""
def insertNode(self, root, target):
# write your code here
if not root:
return target
node = root
while node:
if target.val > node.val:
if node.right is None:
node.right = target
return root
node = node.right
elif target.val < node.val:
if node.left is None:
node.left = target
return root
node = node.left
return root
另外递归的解法也很优雅:
"""
在树上定位要插入节点的位置。
如果它大于当前根节点,则应该在右子树中,
如果它小于当前根节点,则应该在左子树中。
(二叉查找树中保证不插入已经存在的值)
"""
class Solution:
"""
@param: root: The root of the binary search tree.
@param: node: insert this node into the binary search tree
@return: The root of the new binary search tree.
"""
def insertNode(self, root, node):
# write your code here
return self.__helper(root, node)
# helper函数定义成私有属性
def __helper(self, root, node):
if root is None:
return node
if node.val < root.val:
root.left = self.__helper(root.left, node)
else:
root.right = self.__helper(root.right, node)
return root

浙公网安备 33010602011771号