函数式编程之pipeline——很酷有没有
Pipeline
pipeline 管道借鉴于Unix Shell的管道操作——把若干个命令串起来,前面命令的输出成为后面命令的输入,如此完成一个流式计算。(注:管道绝对是一个伟大的发明,他的设哲学就是KISS – 让每个功能就做一件事,并把这件事做到极致,软件或程序的拼装会变得更为简单和直观。这个设计理念影响非常深远,包括今天的Web Service,云计算,以及大数据的流式计算等等)
比如,我们如下的shell命令:
|
1
|
ps auwwx | awk '{print $2}' | sort -n | xargs echo |
如果我们抽象成函数式的语言,就像下面这样:
|
1
|
xargs( echo, sort(n, awk('print $2', ps(auwwx))) ) |
也可以类似下面这个样子:
|
1
|
pids = for_each(result, [ps_auwwx, awk_p2, sort_n, xargs_echo]) |
好了,让我们来看看函数式编程的Pipeline怎么玩?
我们先来看一个如下的程序,这个程序的process()有三个步骤:
1)找出偶数。
2)乘以3
3)转成字符串返回
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
|
def process(num): # filter out non-evens if num % 2 != 0: return num = num * 3 num = 'The Number: %s' % num return numnums = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]for num in nums: print process(num)# 输出:# None# The Number: 6# None# The Number: 12# None# The Number: 18# None# The Number: 24# None# The Number: 30 |
我们可以看到,输出的并不够完美,另外,代码阅读上如果没有注释,你也会比较晕。下面,我们来看看函数式的pipeline(第一种方式)应该怎么写?
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
|
def even_filter(nums): for num in nums: if num % 2 == 0: yield numdef multiply_by_three(nums): for num in nums: yield num * 3def convert_to_string(nums): for num in nums: yield 'The Number: %s' % numnums = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]pipeline = convert_to_string(multiply_by_three(even_filter(nums)))for num in pipeline: print num# 输出:# The Number: 6# The Number: 12# The Number: 18# The Number: 24# The Number: 30 |
我们动用了Python的关键字 yield,这个关键字主要是返回一个Generator,yield 是一个类似 return 的关键字,只是这个函数返回的是个Generator-生成器。所谓生成器的意思是,yield返回的是一个可迭代的对象,并没有真正的执行函数。也就是说,只有其返回的迭代对象被真正迭代时,yield函数才会正真的运行,运行到yield语句时就会停住,然后等下一次的迭代。(这个是个比较诡异的关键字)这就是lazy evluation。
好了,根据前面的原则——“使用Map & Reduce,不要使用循环”,那我们用比较纯朴的Map & Reduce吧。
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
|
def even_filter(nums): return filter(lambda x: x%2==0, nums)def multiply_by_three(nums): return map(lambda x: x*3, nums)def convert_to_string(nums): return map(lambda x: 'The Number: %s' % x, nums)nums = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]pipeline = convert_to_string( multiply_by_three( even_filter(nums) ) )for num in pipeline: print num |
但是他们的代码需要嵌套使用函数,这个有点不爽,如果我们能像下面这个样子就好了(第二种方式)。
|
1
2
3
|
pipeline_func(nums, [even_filter, multiply_by_three, convert_to_string]) |
那么,pipeline_func 实现如下:
|
1
2
3
4
|
def pipeline_func(data, fns): return reduce(lambda a, x: x(a), fns, data) |
好了,在读过这么多的程序后,你可以回头看一下这篇文章的开头对函数式编程的描述,可能你就更有感觉了。
最后,我希望这篇浅显易懂的文章能让你感受到函数式编程的思想,就像OO编程,泛型编程,过程式编程一样,我们不用太纠结是不是我们的程序就是OO,就是functional的,我们重要的品味其中的味道。
参考
- Wikipedia: Functional Programming
- truly understanding the difference between procedural and functional
- A practical introduction to functional programming
- What is the difference between procedural programming and functional programming?
- Can someone give me examples of functional programming vs imperative/procedural programming?
- OOP vs Functional Programming vs Procedural
- Python – Functional Programming HOWTO
补充:评论中redraiment的这个评论大家也可以读一读。
感谢谢网友S142857 提供的shell风格的python pipeline:
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
|
class Pipe(object): def __init__(self, func): self.func = func def __ror__(self, other): def generator(): for obj in other: if obj is not None: yield self.func(obj) return generator()@Pipedef even_filter(num): return num if num % 2 == 0 else None@Pipedef multiply_by_three(num): return num*3@Pipedef convert_to_string(num): return 'The Number: %s' % num@Pipedef echo(item): print item return itemdef force(sqs): for item in sqs: passnums = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]force(nums | even_filter | multiply_by_three | convert_to_string | echo) |

浙公网安备 33010602011771号