Mit6.824 Lab1-MapReduce

前言

Mit6.824 是我在学习一些分布式系统方面的知识的时候偶然看到的,然后就开始尝试跟课。不得不说,国外的课程难度是真的大,一周的时间居然要学一门 Go 语言,然后还要读论文,进而做MapReduce 实验。
由于 MR(MapReduce) 框架需要建立在 DFS(Distributed File System)的基础上实现,所以本实验是通过使用多线程来模拟分布式环境。虽然难度上大大降低,但是通过该实验,还是会让我们对 MR 的核心原理有一个较为深刻的认识。
做实验之前我们需要先把经典的 MapReduce 论文给看了,窝比较建议直接看英文原文,但如果时间不充裕的话,可以直接在网上找中文的翻译版。
刚开始做这个实验的时候真的是一头雾水,完全不知道如何下手。后来发现这个工程有一个自动化测试文件(test_test.go),每部分实验都会使用这个测试文件里的函数对代码进行测试。我们只要顺着这个测试函数逐步倒推,然后补全代码即可。

Part I: Map/Reduce input and output

第一部分是先实现一个顺序版(sequential)的MR,让我们对 MR 的流程有一个大体的认识,并且实现doMap()doReduce() 两个函数。
其包含两个测试函数TestSequentialSingle()TestSequentialMany()

TestSequentialSingle()

每个map worker处理一个文件,所以map worker的数量就等于文件的数量。
测试单个map worker 和 reduce worker。

func TestSequentialSingle(t *testing.T) {
	mr := Sequential("test", makeInputs(1), 1, MapFunc, ReduceFunc)
	mr.Wait()
	check(t, mr.files)
	checkWorker(t, mr.stats)
	cleanup(mr)
}

TestSequentialMany()

此测试函数测试多个 map worker 和多个 reduce worker。
其运行逻辑和TestSequentialSingle类似。

func TestSequentialMany(t *testing.T) {
	mr := Sequential("test", makeInputs(5), 3, MapFunc, ReduceFunc)
	mr.Wait()
	check(t, mr.files)
	checkWorker(t, mr.stats)
	cleanup(mr)
}

Sequential()

测试函数将工作名称,测试文件,reduce 的数量,用户定义的 map 函数,reduce 函数五个实参传递给Sequential()

// Sequential runs map and reduce tasks sequentially, waiting for each task to
// complete before running the next.
func Sequential(jobName string, files []string, nreduce int,
	mapF func(string, string) []KeyValue,
	reduceF func(string, []string) string,
) (mr *Master) {
	mr = newMaster("master")
	go mr.run(jobName, files, nreduce, func(phase jobPhase) {
		switch phase {
		case mapPhase:
			for i, f := range mr.files {
				doMap(mr.jobName, i, f, mr.nReduce, mapF)
			}
		case reducePhase:
			for i := 0; i < mr.nReduce; i++ {
				doReduce(mr.jobName, i, mergeName(mr.jobName, i), len(mr.files), reduceF)
			}
		}
	}, func() {
		mr.stats = []int{len(files) + nreduce}
	})
	return
}

Sequential()首先获取一个Master 对象的指针,然后利用函数闭包运行Master.run()

Master.run()

// run executes a mapreduce job on the given number of mappers and reducers.
//
// First, it divides up the input file among the given number of mappers, and
// schedules each task on workers as they become available. Each map task bins
// its output in a number of bins equal to the given number of reduce tasks.
// Once all the mappers have finished, workers are assigned reduce tasks.
//
// When all tasks have been completed, the reducer outputs are merged,
// statistics are collected, and the master is shut down.
//
// Note that this implementation assumes a shared file system.
func (mr *Master) run(jobName string, files []string, nreduce int,
	schedule func(phase jobPhase),
	finish func(),
) {
	mr.jobName = jobName
	mr.files = files
	mr.nReduce = nreduce

	fmt.Printf("%s: Starting Map/Reduce task %s\n", mr.address, mr.jobName)

	schedule(mapPhase)
	schedule(reducePhase)
	finish()
	mr.merge()

	fmt.Printf("%s: Map/Reduce task completed\n", mr.address)

	mr.doneChannel <- true
}

doMap()

doMap()doReduce()是需要我们去实现的函数。
doMap()的实现主要是将用户定义的MapFunc()切割的文本,通过 hash 分到 'nReduce'个切片中去。

func doMap(
	jobName string, // the name of the MapReduce job
	mapTaskNumber int, // which map task this is
	inFile string,
	nReduce int, // the number of reduce task that will be run ("R" in the paper)
	mapF func(file string, contents string) []KeyValue,
) {
	// read contents from 'infile'
	dat,err := ioutil.ReadFile(inFile)
	if err != nil {
		log.Fatal("doMap: readFile ", err)
	}

	//transfer data into ‘kvSlice’ according to the mapF()
	kvSlice := mapF(inFile, string(dat))

	//divide the ‘kvSlice’ into 'reduceKv' according to the ihash()
	var reduceKv [][]KeyValue // temporary variable which will be written into reduce files
	for i:=0;i<nReduce;i++ {
		s1 := make([]KeyValue,0)
		reduceKv = append(reduceKv, s1)
	}
	for _,kv := range kvSlice{
		hash := ihash(kv.Key) % nReduce
		reduceKv[hash] = append(reduceKv[hash],kv)
	}

	//write 'reduceKv' into ‘nReduce’ JSON files
	for i := 0;i<nReduce;i++ {
		file,err := os.Create(reduceName(jobName,mapTaskNumber,i))
		if err != nil {
			log.Fatal("doMap: create ", err)
		}

		enc := json.NewEncoder(file)
		for _, kv := range reduceKv[i]{
			err := enc.Encode(&kv)
			if err != nil {
				log.Fatal("doMap: json encodem ", err)
			}
		}

		file.Close()

	}
}

doReduce()

doReduce()主要是将 key 值相同的 value 打包发送给用户定义的 ReduceFunc(),获得一个新的 kv对,key 值不变,而value值则是ReduceFunc()的返回值,排序,最后将新的 kv对 切片写入文件。

type ByKey []KeyValue
func (a ByKey) Len() int { return len(a) }
func (a ByKey) Swap(i, j int) { a[i],a[j] = a[j],a[i] }
func (a ByKey) Less(i, j int) bool { return a[i].Key < a[j].Key }

func doReduce(
	jobName string, // the name of the whole MapReduce job
	reduceTaskNumber int, // which reduce task this is
	outFile string, // write the output here
	nMap int, // the number of map tasks that were run ("M" in the paper)
	reduceF func(key string, values []string) string,
) {
	//read kv slice from the json file
	var kvSlice []KeyValue
	for i := 0;i<nMap;i++{
		//file, _ := os.OpenFile(reduceName(jobName,i,reduceTaskNumber), os.O_RDONLY, 0666)
		file,err := os.Open(reduceName(jobName,i,reduceTaskNumber))
		if err != nil {
			log.Fatal("doReduce: open ", err)
		}
		var kv KeyValue
		dec := json.NewDecoder(file)
		for{
			err := dec.Decode(&kv)
			kvSlice = append(kvSlice,kv)
			if err == io.EOF {
				break
			}
		}
		file.Close()
		/********/
		//此处如果用 defer,可能会造成文件开启过多,造成程序崩溃
		/********/
	}

	//sort the intermediate kv slices by key
	sort.Sort(ByKey(kvSlice))

	//process kv slices in the reduceF()
	var reduceFValue []string
	var outputKv []KeyValue
	var preKey string = kvSlice[0].Key
	for i,kv := range kvSlice{
		if i == (len(kvSlice) - 1) {
			reduceFValue = append(reduceFValue, kv.Value)
			outputKv = append(outputKv, KeyValue{preKey, reduceF(preKey, reduceFValue)})
		} else {
				if kv.Key != preKey {
					outputKv = append(outputKv, KeyValue{preKey, reduceF(preKey, reduceFValue)})
					reduceFValue = make([]string, 0)
				}
				reduceFValue = append(reduceFValue, kv.Value)
		}

		preKey = kv.Key
	}

	//write the reduce output as JSON encoded kv objects to the file named outFile
	file,err := os.Create(outFile)
	if err != nil {
		log.Fatal("doRuduce: create ", err)
	}
	defer file.Close()

	enc := json.NewEncoder(file)
	for _, kv := range outputKv{
		err := enc.Encode(&kv)
		if err != nil {
			log.Fatal("doRuduce: json encode ", err)
		}
	}
}

Part II: Single-worker word count

第二部分是实现mapF()reduceF()函数,来实现通过顺序 MR统计词频的功能。
比较简单,就直接放代码了。

func mapF(filename string, contents string) []mapreduce.KeyValue {
	f := func(c rune) bool {
		return !unicode.IsLetter(c)
	}
	var strSlice []string = strings.FieldsFunc(contents,f)
	var kvSlice []mapreduce.KeyValue
	for _,str := range strSlice {
		kvSlice = append(kvSlice, mapreduce.KeyValue{str, "1"})
	}

	return kvSlice
}

func reduceF(key string, values []string) string {
	var cnt int64
	for _,str := range values{
		temp,err := strconv.ParseInt(str,10,64)
		if(err != nil){
			fmt.Println("wc :parseint ",err)
		}
		cnt += temp
	}
	return strconv.FormatInt(cnt,10)
}

Part III: Distributing MapReduce tasks && Part IV: Handling worker failures

第三部分和第四部分可以一起来做,主要是完成schedule(),实现一个通过线程并发执行 map worker 和 reduce worker 的 MR 框架。框架通过 RPC 来模拟分布式计算,并要带有 worker 的容灾功能。

TestBasic()

测试函数启动两个线程运行RUnWoker()

func TestBasic(t *testing.T) {
	mr := setup()
	for i := 0; i < 2; i++ {
		go RunWorker(mr.address, port("worker"+strconv.Itoa(i)),
			MapFunc, ReduceFunc, -1)
	}
	mr.Wait()
	check(t, mr.files)
	checkWorker(t, mr.stats)
	cleanup(mr)
}

setup() && Distributed()

func setup() *Master {
	files := makeInputs(nMap)
	master := port("master")
	mr := Distributed("test", files, nReduce, master)
	return mr
}

通过mr.startRPCServer() 启动 master 的 RPC 服务器,然后通过 mr.run()进行 worker 的调度。

// Distributed schedules map and reduce tasks on workers that register with the
// master over RPC.
func Distributed(jobName string, files []string, nreduce int, master string) (mr *Master) {
	mr = newMaster(master)
	mr.startRPCServer()
	go mr.run(jobName, files, nreduce,
		func(phase jobPhase) {
			ch := make(chan string)
			go mr.forwardRegistrations(ch)
			schedule(mr.jobName, mr.files, mr.nReduce, phase, ch)
		},
		func() {
			mr.stats = mr.killWorkers()
			mr.stopRPCServer()
		})
	return
}

Master.forwardRegistrations()

该函数通过worker 的数量来判断是否有新 worker 启动,一旦发现有新的 worker 启动,则使用管道(ch)通知schedule()
理解该函数对实现后面的schedule()至关重要。

// helper function that sends information about all existing
// and newly registered workers to channel ch. schedule()
// reads ch to learn about workers.
func (mr *Master) forwardRegistrations(ch chan string) {
	i := 0
	for {
		mr.Lock()
		if len(mr.workers) > i {
			// there's a worker that we haven't told schedule() about.
			w := mr.workers[i]
			go func() { ch <- w }() // send without holding the lock.
			i = i + 1
		} else {
			// wait for Register() to add an entry to workers[]
			// in response to an RPC from a new worker.
			mr.newCond.Wait()
		}
		mr.Unlock()
	}
}

schedule()

shedule()虽然不长,但实现起来还是有点难度的。
waitGroup用来判断任务是否完成。
registerChan来监听是否有新的 worker 启动,如果有的话,就启动一个线程来运行该 worker。通过新开线程来运行新 worker的逻辑比较符合分布式 MR 的特点。
对于 宕掉的worker执行call()操作时,会返回false
每开始执行一个任务,就让waitGroup减一,而执行失败(call()返回 false)则将waitGroup加一,代表会将该任务安排给其他 worker。

waitGroup.Wait()则会等到任务完全执行完返回。

func schedule(jobName string, mapFiles []string, nReduce int, phase jobPhase, registerChan chan string) {
	var ntasks int
	var n_other int // number of inputs (for reduce) or outputs (for map)
	switch phase {
	case mapPhase:
		ntasks = len(mapFiles)
		n_other = nReduce
	case reducePhase:
		ntasks = nReduce
		n_other = len(mapFiles)
	}

	fmt.Printf("Schedule: %v %v tasks (%d I/Os)\n", ntasks, phase, n_other)

	// All ntasks tasks have to be scheduled on workers, and only once all of
	// them have been completed successfully should the function return.
	// Remember that workers may fail, and that any given worker may finish
	// multiple tasks.

	waitGroup := sync.WaitGroup{}
	waitGroup.Add(ntasks)

	taskChan := make(chan int, ntasks)
	for i:=0;i<ntasks;i++  {
		taskChan <- i
	}

	go func() {
		for {
			ch := <- registerChan
			go func(c string) {
				for {
					i := <- taskChan
					if call(c,"Worker.DoTask", &DoTaskArgs{jobName,
						mapFiles[i],phase,i,n_other},new(struct{})){
						waitGroup.Done()
					} else{
						taskChan <- i
					}
				}
			}(ch)
		}
	}()

	waitGroup.Wait()

	fmt.Printf("Schedule: %v phase done\n", phase)
}

RunWorker()

通过RunWorker() 来增加 worker。
nRPC来控制 worker 的寿命,每接收一次 rpc 请求就 -1s。如果初始值为 -1,则代表改 worker 是永生的。

// RunWorker sets up a connection with the master, registers its address, and
// waits for tasks to be scheduled.
func RunWorker(MasterAddress string, me string,
	MapFunc func(string, string) []KeyValue,
	ReduceFunc func(string, []string) string,
	nRPC int,
) {
	debug("RunWorker %s\n", me)
	wk := new(Worker)
	wk.name = me
	wk.Map = MapFunc
	wk.Reduce = ReduceFunc
	wk.nRPC = nRPC
	rpcs := rpc.NewServer()
	rpcs.Register(wk)
	os.Remove(me) // only needed for "unix"
	l, e := net.Listen("unix", me)
	if e != nil {
		log.Fatal("RunWorker: worker ", me, " error: ", e)
	}
	wk.l = l
	wk.register(MasterAddress)

	// DON'T MODIFY CODE BELOW
	for {
		wk.Lock()
		if wk.nRPC == 0 {
			wk.Unlock()
			break
		}
		wk.Unlock()
		conn, err := wk.l.Accept()
		if err == nil {
			wk.Lock()
			wk.nRPC--
			wk.Unlock()
			go rpcs.ServeConn(conn)
		} else {
			break
		}
	}
	wk.l.Close()
	debug("RunWorker %s exit\n", me)
}

Part V: Inverted index generation

第五部分是实现倒排索引。此处要求的倒排索引,就是在输出结果时,需要将出现过 key 值文件的文件名在 key 值后面输出。
功能是通过完成 mapF()reduceF() 来实现的。

mapF()

将key 值所在文件的文件名赋给 kv对 的value。

func mapF(document string, value string) (res []mapreduce.KeyValue) {
	f := func(c rune) bool {
		return !unicode.IsLetter(c)
	}
	var strSlice []string = strings.FieldsFunc(value,f)
	var kvSlice []mapreduce.KeyValue
	for _,str := range strSlice {
		kvSlice = append(kvSlice, mapreduce.KeyValue{str, document})
	}

	return kvSlice
}

reduceF()

将相同 key 值的所有 value 打包并统计数量返回。

func reduceF(key string, values []string) string {
	var cnt int64
	var documents string
	set := make(map[string]bool)
	for _,str := range values{
		set[str] = true
	}
	var keys []string
	for key := range set{
		if set[key] == false{
			continue
		}
		keys = append(keys,key)
	}
	sort.Strings(keys)
	for _,key := range keys{
		cnt++
		if cnt >= 2{
			documents += ","
		}
		documents += key
	}
	//return strconv.FormatInt(cnt,10)
	return strconv.FormatInt(cnt,10) + " " + documents
}

后记

从刚开始的无从下手,到现在通过Lab1全部测试,MR 实验算是完全做完了,还是很有成就感的。
除了对 MR 有一个更深的理解之外,也深深感受到了优秀系统的魅力——功能强大,结构简洁。
同时又了解了一门新语言——GoLang,一门专门为高并发系统而设计的语言,用起来还是很舒服的。
但这毕竟是分布式系统的第一个实验,欠缺的知识还很多,继续努力。

posted @ 2018-06-02 22:31  bnyf  阅读(312)  评论(0)    收藏  举报