关于斯特林数

Copyright (c) 2025 bluewindde
采用 CC BY-NC-SA 4.0 International 协议 发布。

本文也发布在 https://www.luogu.com.cn/article/27gbwleo

前情提要:https://www.luogu.com.cn/article/wofybi22

摘要:本文通过代数方法给出第二类斯特林数的定义。


modfish_ 好闪,拜谢 modfish_!


规定 \(0^0 = 1\)

考虑函数

\[\def\dd{\mathrm d} \def\dx{\mathrm dx} \def\d#1{\mathrm d#1} \begin{align*} f_k(n) = &\sum\limits_{i = 0}^n \binom n i i^k p^i \\ = &\left( p \frac \dd {\d p} \right)^k \sum\limits_{i = 0}^n \binom n i p^i \\ = &\left( p \frac \dd {\d p} \right) f_{k-1}(n) \\ \end{align*} \]

特别地

\[f_0(n) = \sum\limits_{i = 0}^n \binom n i p^i = (1 + p)^n \]

因此

\[\def\dd{\mathrm d} \def\dx{\mathrm dx} \def\d#1{\mathrm d#1} \begin{align*} f_1(n) &= \left( p \frac \dd {\d p} \right) (1 + p)^n = np(1+p)^{n-1} \\ f_2(n) &= np(1+p)^{n-1} + n(n-1)p^2(1+p)^{n-2} \\ f_3(n) &= np(1+p)^{n-1} + 3n(n-1)p^2(1+p)^{n-2} + n(n-1)(n-2)p^3(1+p)^{n-3} \\ f_4(n) &= np(1+p)^{n-1} + 7n(n-1)p^2(1+p)^{n-2} + 6n(n-1)(n-2)p^3(1+p)^{n-3} + n(n-1)(n-2)(n-3)p^4(1+p)^{n-4} \\ &\cdots \\ \end{align*} \]

关注每次求导带来的系数变化,设第 \(t\)\(p^t(1+p)^{n-t}\) 的系数为 \(g_k(t)\),有递推

\[g_k(t) = t \cdot g_{k-1}(t) + g_{k-1}(t-1) \]

特别地

\[g_k(1) = g_{k-1}(1) = 1 \]

\[g_k(k) = g_{k-1}(k - 1) = 1 \]

\(g\) 的递推公式和 第二类斯特林数 一模一样,使用 \(g_k(t)\) 定义第二类斯特林数

\[{k \brace t} = g_k(t), 1 \leqslant t \leqslant k \]

该定义通常采用的组合意义定义等价。

第二类斯特林数组合意义:\(n\) 个两两不同的物体,划分为 \(k\) 个互不区分非空子集的方案数。

因此

\[f_k(n) = \sum\limits_{i = 1}^k {k \brace i} \frac {n!} {(n-i)!} p^i(1+p)^{n-i} \]


多么波澜壮阔的冒险!

英雄之旅抵达终点,「再创世」的真相也呼之欲出——

可是,当真如此吗?


\(k = n\) 时,\((1+p)^{n-k} = (1+p)^0 = 1\),但在上面的递推中它的导数被认为是 \((1+p)^{-1}\)

临界情况

\[\begin{align*} f_n(n) &= \sum\limits_{i = 1}^{n-1} {n \brace i} \frac {n!} {(n-i)!} p^i(1+p)^{n-i} + {n \brace n} \frac {n!} {(n-n)!} p^n(1+p)^{n-n} \\ &= \sum\limits_{i = 1}^{n-1} {n \brace i} \frac {n!} {(n-i)!} p^i(1+p)^{n-i} + n! p^n \\ \end{align*} \]

然后

\[\begin{align*} f_{n+1}(n) &= \sum\limits_{i = 1}^{n-1} {n+1 \brace i} \frac {n!} {(n-i)!} p^i(1+p)^{n-i} + {n \brace n-1} n! p^n + n! n p^n \\ f_{n+2}(n) &= \sum\limits_{i = 1}^{n-1} {n+2 \brace i} \frac {n!} {(n-i)!} p^i(1+p)^{n-i} + {n+1 \brace n-1} n! p^n + {n \brace n-1} n! n p^n + n! n^2 p^n \\ &\cdots \\ \end{align*} \]

\(k > n\)

\[f_k(n) = \sum\limits_{i = 1}^{n-1} {k \brace i} \frac {n!} {(n-i)!} p^i (1+p)^{n-i} + \sum\limits_{i = n}^k {i-1 \brace n-1} n!n^{k-i}p^n \]

根据 \({k \brace n} = n {k-1 \brace n} + {k-1 \brace n-1}\),有

\[\begin{align*} {k \brace n} &= n {k-1 \brace n} + {k-1 \brace n-1} \\ &= n \left( n {k-2 \brace n} + {k-2 \brace n-1} \right) + {k-1 \brace n-1} \\ &= n \left( n \left( n {k-3 \brace n} + {k-3 \brace n-1} \right) + {k-2 \brace n-1} \right) + {k-1 \brace n-1} \\ &= \cdots \\ &= \sum\limits_{i = n}^k {i-1 \brace n-1} n^{k-i} \\ \end{align*} \]

因此

\[\begin{align*} f_k(n) &= \sum\limits_{i = 1}^{n-1} {k \brace i} \frac {n!} {(n-i)!} p^i (1+p)^{n-i} + \sum\limits_{i = n}^k {i-1 \brace n-1} n!n^{k-i}p^n \\ &= \sum\limits_{i = 1}^{n-1} {k \brace i} \frac {n!} {(n-i)!} p^i (1+p)^{n-i} + {k \brace n} n!p^n \\ &= \sum\limits_{i = 1}^n {k \brace i} \frac {n!} {(n-i)!} p^i (1+p)^{n-i} \\ \end{align*} \]

综上所述,\(n \in \mathbf N, k \in \mathbf N*\)

\[f_k(n) = \sum\limits_{i = 0}^n \binom n i i^k p^i = \sum\limits_{i = 1}^{\min(n, k)} {k \brace i} \frac {n!} {(n-i)!} p^i (1+p)^{n-i} \]

注意为了使第二类斯特林数有定义,最终式子不包含 \(k = 0\) 的情况。

注:\(\frac {n!} {(n-m)!}\) 也记作下降幂 \(n^{\underbar m}\),但该记号会自动处理 \(n < m\) 的情况,例如 \(5^{\underbar{10}} = 5^{\underbar 5} = \frac {5!} {0!} = 5! = 120\)


\(p = -1\)

\[f_k(n) = \sum\limits_{i = 0}^n \binom n i i^k (-1)^i = \begin{cases} 0, &k < n, \\ (-1)^n {k \brace n} n!, &k \geqslant n. \\ \end{cases} \]

modfish_ 给上面的式子赋予了组合意义:长为 \(k\),值域为 \([1, n]\) 的整数数列,值域中的每个数都在数列中出现至少一次的方案数。\(f_k(n)\) 就是在容斥计算该问题的答案。

\(k = N, n = M\),导出第二类斯特林数通项公式

\[\begin{align*} {n \brace m} &= (-1)^m \frac 1 {m!} \sum\limits_{i = 0}^m \binom m i i^n (-1)^i \\ &= (-1)^m \frac 1 {m!} \sum\limits_{i = 0}^m \frac {m!} {i! (m-i)!} i^n (-1)^i \\ &= (-1)^m \sum\limits_{i = 0}^m \frac {(-1)^i i^n} {i! (m-i)!} \\ \end{align*} \]


\(p = 1\)

\[f_k(n) = \sum\limits_{i = 0}^n \binom n i i^k = \sum\limits_{i = 1}^{\min(n, k)} {k \brace i} \frac {n!} {(n-i)!} 2^{n-i} \]

导出组合恒等式

\[\begin{align*} f_1(n) &= \sum\limits_{i = 0}^n \binom n i i = n2^{n-1} \\ f_2(n) &= \sum\limits_{i = 0}^n \binom n i i^2 \\ &= n 2^{n-1} + n(n-1) 2^{n-2} = n(n+1)2^{n-2} \qquad (n \geqslant 2) \\ f_3(n) &= \sum\limits_{i = 0}^n \binom n i i^3 \\ &= n2^{n-1} + 3n(n-1)2^{n-2} + n(n-1)(n-2)2^{n-3} \\ &= (n+3)n^22^{n-3} \qquad (n \geqslant 3) \\ \end{align*} \]

题目

Luogu P6620 [省选联考 2020 A 卷] 组合数问题

\[\begin{align*} &\sum\limits_{k = 0}^n f(k) x^k \binom n k \\ = &\sum\limits_{t = 0}^m a_t \sum\limits_{k = 0}^n k^t x^k \binom n k \\ = &\sum\limits_{t = 0}^m a_t \sum\limits_{i = 1}^t {t \brace i} n^{\underbar{i}} \sum\limits_{k = 0}^n k^t x^k \binom n k \\ \end{align*} \]

然后容易处理。

posted @ 2025-12-22 15:30  bluewindde  阅读(4)  评论(0)    收藏  举报