No.16 相关性分析

主要内容:

  • 图表分析查看相关性
  • 相关系数计算
  • 相关系数显著性检验
  • 相关系数矩阵可视化

1. 图表分析查看相关性

> mtcars
                     mpg cyl  disp  hp drat    wt  qsec vs am gear carb
Mazda RX4           21.0   6 160.0 110 3.90 2.620 16.46  0  1    4    4
Mazda RX4 Wag       21.0   6 160.0 110 3.90 2.875 17.02  0  1    4    4
Datsun 710          22.8   4 108.0  93 3.85 2.320 18.61  1  1    4    1
Hornet 4 Drive      21.4   6 258.0 110 3.08 3.215 19.44  1  0    3    1
Hornet Sportabout   18.7   8 360.0 175 3.15 3.440 17.02  0  0    3    2
Valiant             18.1   6 225.0 105 2.76 3.460 20.22  1  0    3    1
Duster 360          14.3   8 360.0 245 3.21 3.570 15.84  0  0    3    4
Merc 240D           24.4   4 146.7  62 3.69 3.190 20.00  1  0    4    2
Merc 230            22.8   4 140.8  95 3.92 3.150 22.90  1  0    4    2
Merc 280            19.2   6 167.6 123 3.92 3.440 18.30  1  0    4    4
Merc 280C           17.8   6 167.6 123 3.92 3.440 18.90  1  0    4    4
Merc 450SE          16.4   8 275.8 180 3.07 4.070 17.40  0  0    3    3
Merc 450SL          17.3   8 275.8 180 3.07 3.730 17.60  0  0    3    3
Merc 450SLC         15.2   8 275.8 180 3.07 3.780 18.00  0  0    3    3
Cadillac Fleetwood  10.4   8 472.0 205 2.93 5.250 17.98  0  0    3    4
Lincoln Continental 10.4   8 460.0 215 3.00 5.424 17.82  0  0    3    4
Chrysler Imperial   14.7   8 440.0 230 3.23 5.345 17.42  0  0    3    4
Fiat 128            32.4   4  78.7  66 4.08 2.200 19.47  1  1    4    1
Honda Civic         30.4   4  75.7  52 4.93 1.615 18.52  1  1    4    2
Toyota Corolla      33.9   4  71.1  65 4.22 1.835 19.90  1  1    4    1
Toyota Corona       21.5   4 120.1  97 3.70 2.465 20.01  1  0    3    1
Dodge Challenger    15.5   8 318.0 150 2.76 3.520 16.87  0  0    3    2
AMC Javelin         15.2   8 304.0 150 3.15 3.435 17.30  0  0    3    2
Camaro Z28          13.3   8 350.0 245 3.73 3.840 15.41  0  0    3    4
Pontiac Firebird    19.2   8 400.0 175 3.08 3.845 17.05  0  0    3    2
Fiat X1-9           27.3   4  79.0  66 4.08 1.935 18.90  1  1    4    1
Porsche 914-2       26.0   4 120.3  91 4.43 2.140 16.70  0  1    5    2
Lotus Europa        30.4   4  95.1 113 3.77 1.513 16.90  1  1    5    2
Ford Pantera L      15.8   8 351.0 264 4.22 3.170 14.50  0  1    5    4
Ferrari Dino        19.7   6 145.0 175 3.62 2.770 15.50  0  1    5    6
Maserati Bora       15.0   8 301.0 335 3.54 3.570 14.60  0  1    5    8
Volvo 142E          21.4   4 121.0 109 4.11 2.780 18.60  1  1    4    2

1.1先删除vs 和am 两列非连续型变量,然后用cor()函数计算相关性系数

cor(mtcars[,-c(8,9)])
结果:
> #计算相关性系数的函数:cor() 默认计算的是皮尔逊相关系数
> cor(mtcars[,-c(8,9)])
            mpg        cyl       disp         hp        drat         wt        qsec       gear       carb
mpg   1.0000000 -0.8521620 -0.8475514 -0.7761684  0.68117191 -0.8676594  0.41868403  0.4802848 -0.5509251
cyl  -0.8521620  1.0000000  0.9020329  0.8324475 -0.69993811  0.7824958 -0.59124207 -0.4926866  0.5269883
disp -0.8475514  0.9020329  1.0000000  0.7909486 -0.71021393  0.8879799 -0.43369788 -0.5555692  0.3949769
hp   -0.7761684  0.8324475  0.7909486  1.0000000 -0.44875912  0.6587479 -0.70822339 -0.1257043  0.7498125
drat  0.6811719 -0.6999381 -0.7102139 -0.4487591  1.00000000 -0.7124406  0.09120476  0.6996101 -0.0907898
wt   -0.8676594  0.7824958  0.8879799  0.6587479 -0.71244065  1.0000000 -0.17471588 -0.5832870  0.4276059
qsec  0.4186840 -0.5912421 -0.4336979 -0.7082234  0.09120476 -0.1747159  1.00000000 -0.2126822 -0.6562492
gear  0.4802848 -0.4926866 -0.5555692 -0.1257043  0.69961013 -0.5832870 -0.21268223  1.0000000  0.2740728
carb -0.5509251  0.5269883  0.3949769  0.7498125 -0.09078980  0.4276059 -0.65624923  0.2740728  1.0000000

 

1.2 计算斯皮尔曼相关系数(秩系数)

#计算相关性系数的函数:cor(),指定方法为斯皮尔曼
cor(mtcars[,-c(8,9)], method = "spearman")
结果:
> #计算相关性系数的函数:cor(),指定方法为斯皮尔曼
> cor(mtcars[,-c(8,9)], method = "spearman")
            mpg        cyl       disp         hp        drat         wt        qsec       gear       carb
mpg   1.0000000 -0.9108013 -0.9088824 -0.8946646  0.65145546 -0.8864220  0.46693575  0.5427816 -0.6574976
cyl  -0.9108013  1.0000000  0.9276516  0.9017909 -0.67888119  0.8577282 -0.57235095 -0.5643105  0.5800680
disp -0.9088824  0.9276516  1.0000000  0.8510426 -0.68359210  0.8977064 -0.45978176 -0.5944703  0.5397781
hp   -0.8946646  0.9017909  0.8510426  1.0000000 -0.52012499  0.7746767 -0.66660602 -0.3314016  0.7333794
drat  0.6514555 -0.6788812 -0.6835921 -0.5201250  1.00000000 -0.7503904  0.09186863  0.7448162 -0.1252229
wt   -0.8864220  0.8577282  0.8977064  0.7746767 -0.75039041  1.0000000 -0.22540120 -0.6761284  0.4998120
qsec  0.4669358 -0.5723509 -0.4597818 -0.6666060  0.09186863 -0.2254012  1.00000000 -0.1481997 -0.6587181
gear  0.5427816 -0.5643105 -0.5944703 -0.3314016  0.74481617 -0.6761284 -0.14819967  1.0000000  0.1148870
carb -0.6574976  0.5800680  0.5397781  0.7333794 -0.12522294  0.4998120 -0.65871814  0.1148870  1.0000000

 

1.3肯德尔相关系数(秩系数)

#计算相关性系数的函数:cor(),指定方法为肯德尔
cor(mtcars[,-c(8,9)], method = "kendall")
结果:
> #计算相关性系数的函数:cor(),指定方法为肯德尔
> cor(mtcars[,-c(8,9)], method = "kendall")
            mpg        cyl       disp         hp        drat         wt        qsec        gear        carb
mpg   1.0000000 -0.7953134 -0.7681311 -0.7428125  0.46454879 -0.7278321  0.31536522  0.43315089 -0.50439455
cyl  -0.7953134  1.0000000  0.8144263  0.7851865 -0.55131785  0.7282611 -0.44896982 -0.51254349  0.46542994
disp -0.7681311  0.8144263  1.0000000  0.6659987 -0.49898277  0.7433824 -0.30081549 -0.47597955  0.41373600
hp   -0.7428125  0.7851865  0.6659987  1.0000000 -0.38262689  0.6113081 -0.47290613 -0.27944584  0.59598416
drat  0.4645488 -0.5513178 -0.4989828 -0.3826269  1.00000000 -0.5471495  0.03272155  0.58392476 -0.09535193
wt   -0.7278321  0.7282611  0.7433824  0.6113081 -0.54714953  1.0000000 -0.14198812 -0.54359562  0.37137413
qsec  0.3153652 -0.4489698 -0.3008155 -0.4729061  0.03272155 -0.1419881  1.00000000 -0.09126069 -0.50643945
gear  0.4331509 -0.5125435 -0.4759795 -0.2794458  0.58392476 -0.5435956 -0.09126069  1.00000000  0.09801487
carb -0.5043945  0.4654299  0.4137360  0.5959842 -0.09535193  0.3713741 -0.50643945  0.09801487  1.00000000

  

2. 相关系数的显著性检验 

2.1 cor.test()    #相关系数的显著性检验,两个变量之间的,一次只能算一个

#相关系数的显著性检验,两个变量之间的,一次只能算一个
cor.test(mtcars$disp,mtcars$wt)
结果:
> #相关系数的显著性检验,两个变量之间的
> cor.test(mtcars$disp,mtcars$wt)

	Pearson's product-moment correlation  #默认的是对皮尔逊相关系数的检验

data:  mtcars$disp and mtcars$wt
t = 10.576, df = 30, p-value = 1.222e-11      #df:自由度   
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:    #置信区间 
 0.7811586 0.9442902
sample estimates:
      cor 
0.8879799      #相关系数的值

  

 2.2  corr.test()

#加载包
library(psych)
#计算去掉数据集mtcars 第8,9列后的数据集的相关系数显著性检验
corr.test(mtcars[,-c(8,9)]) 

结果:
> #计算去掉数据集mtcars 第8,9列后的数据集的相关系数显著性检验
> corr.test(mtcars[,-c(8,9)])   
Call:corr.test(x = mtcars[, -c(8, 9)])
Correlation matrix 
       mpg   cyl  disp    hp  drat    wt  qsec  gear  carb
mpg   1.00 -0.85 -0.85 -0.78  0.68 -0.87  0.42  0.48 -0.55
cyl  -0.85  1.00  0.90  0.83 -0.70  0.78 -0.59 -0.49  0.53
disp -0.85  0.90  1.00  0.79 -0.71  0.89 -0.43 -0.56  0.39
hp   -0.78  0.83  0.79  1.00 -0.45  0.66 -0.71 -0.13  0.75
drat  0.68 -0.70 -0.71 -0.45  1.00 -0.71  0.09  0.70 -0.09
wt   -0.87  0.78  0.89  0.66 -0.71  1.00 -0.17 -0.58  0.43
qsec  0.42 -0.59 -0.43 -0.71  0.09 -0.17  1.00 -0.21 -0.66
gear  0.48 -0.49 -0.56 -0.13  0.70 -0.58 -0.21  1.00  0.27
carb -0.55  0.53  0.39  0.75 -0.09  0.43 -0.66  0.27  1.00
Sample Size 
[1] 32
Probability values (Entries above the diagonal are adjusted for multiple tests.) 
      mpg cyl disp   hp drat   wt qsec gear carb
mpg  0.00   0 0.00 0.00 0.00 0.00 0.14 0.06 0.02
cyl  0.00   0 0.00 0.00 0.00 0.00 0.01 0.05 0.03
disp 0.00   0 0.00 0.00 0.00 0.00 0.13 0.02 0.18
hp   0.00   0 0.00 0.00 0.11 0.00 0.00 1.00 0.00
drat 0.00   0 0.00 0.01 0.00 0.00 1.00 0.00 1.00
wt   0.00   0 0.00 0.00 0.00 0.00 1.00 0.01 0.13
qsec 0.02   0 0.01 0.00 0.62 0.34 0.00 1.00 0.00
gear 0.01   0 0.00 0.49 0.00 0.00 0.24 0.00 0.77
carb 0.00   0 0.03 0.00 0.62 0.01 0.00 0.13 0.00

 To see confidence intervals of the correlations, print with the short=FALSE option

斯皮尔曼:

#计算去掉数据集mtcars 第8,9列后的数据集的相关系数显著性检验
corr.test(mtcars[,-c(8,9)], method = "spearman", adjust = "none")   

 

可视化:

library(ggcorrplot)
a <- cor(mtcars[,-c(8,9)], method = "spearman")  #显著性检验的矩阵赋值给a
ggcorrplot(a) 

 可以调参:

ggcorrplot(a,lab = T)  #其他参数可参考函数使用方法

 

ggcorrplot(a,lab = T, type = "lower") #upper  

ggcorrplot(a,lab = T, type = "upper", colors = c("red", "white", "green"))

 

 

  

 

  

 

posted @ 2025-01-24 17:10  百里屠苏top  阅读(32)  评论(0)    收藏  举报