#本次采用pytorch实现
#探究房屋状况的俩个因素,房龄和面积
#公式 price = w(area)*area+w(age)*age+b
#损失函数:用于衡量价格预测值与真实值之间的误差,通常我们会选取一个非负数作为误差,且数值越小表示误差越小
#优化函数 ->直接用公式表达出来。这类解叫作解析解
# ->只能通过优化算法有限次迭代模型参数来尽可能降低损失函数的值。这类解叫作数值解
#优化函数的有以下两个步骤:
# (i)初始化模型参数,一般来说使用随机初始化;
# (ii)我们在数据上迭代多次,通过在负梯度方向移动参数来更新每个参数。
#本次采用随机梯度下降
#从零开始的实现
import torch
import time
# 初始化变量 a, b 作为 1000 维向量,进行demo
n = 1000
a = torch.ones(n)
b = torch.ones(n)
# 定义一个计时器类来记录时间
class Timer(object):
"""Record multiple running times."""
def __init__(self):
self.times = []
self.start()
def start(self):
# start the timer
self.start_time = time.time()
def stop(self):
# stop the timer and record time into a list
self.times.append(time.time() - self.start_time)
return self.times[-1]
def avg(self):
# calculate the average and return
return sum(self.times)/len(self.times)
def sum(self):
# return the sum of recorded time
return sum(self.times)
#使用for循环按元素逐一做标量加法timer = Timer()
timer = Timer()
c = torch.zeros(n)
for i in range(n):
c[i] = a[i] + b[i]
'%.9f sec' % timer.stop()
#使用torch来将两个向量直接做矢量加法
timer.start()
d = a + b
'%.9f sec' % timer.stop()
#结果很明显,后者比前者运算速度更快。因此,我们应该尽可能采用矢量计算,以提升计算效率
#线性回归模型从零开始的实现
# 导入包和模块
import torch
from IPython import display
from matplotlib import pyplot as plt
import numpy as np
import random
print(torch.__version__)
#生成数据集,根据之上的公式生成1,000个数据,特征为2
# 设置输入特征编号
num_inputs = 2
# set example number
num_examples = 1000
# 设置真实权重和偏差以生成相应的标签
true_w = [2, -3.4]
true_b = 4.2
features = torch.randn(num_examples, num_inputs,
dtype=torch.float32)
# 返回一个符合均值为0,方差为1的正态分布(标准正态分布)中填充随机数的张量
labels = true_w[0] * features[:, 0] + true_w[1] * features[:, 1] + true_b
labels += torch.tensor(np.random.normal(0, 0.01, size=labels.size()),
dtype=torch.float32)
#使用图像来展示生成的数据
plt.scatter(features[:, 1].numpy(), labels.numpy(), 1);
#读取数据集
def data_iter(batch_size, features, labels):
num_examples = len(features)
indices = list(range(num_examples))
random.shuffle(indices) # 随机读取10个样本
for i in range(0, num_examples, batch_size):
j = torch.LongTensor(indices[i: min(i + batch_size, num_examples)]) # 最后一次可能不够整批
#使用坐标形式存储稀疏矩阵
yield features.index_select(0, j), labels.index_select(0, j)
#return
batch_size = 10
for X, y in data_iter(batch_size, features, labels):
print(X, '\n', y)
break
#初始化模型参数
w = torch.tensor(np.random.normal(0, 0.01, (num_inputs, 1)), dtype=torch.float32)
b = torch.zeros(1, dtype=torch.float32)
w.requires_grad_(requires_grad=True)
b.requires_grad_(requires_grad=True)
#定义模型
def linreg(X, w, b):
return torch.mm(X, w) + b
#torch.mm是两个矩阵相乘,即两个二维的张量相乘
#定义损失函数
def squared_loss(y_hat, y):
return (y_hat - y.view(y_hat.size())) ** 2 / 2
#定义优化函数
def sgd(params, lr, batch_size):
for param in params:
param.data -= lr * param.grad / batch_size #使用 .data 操作无梯度轨迹的参数
# 超参数初始化
lr = 0.03
num_epochs = 5
net = linreg
loss = squared_loss
# 训练
for epoch in range(num_epochs): # 训练num_epochs次
# 在每个 epoch 中,dataset 中的所有样本都将被使用一次
# X 是特征,y 是批次样本的标签
for X, y in data_iter(batch_size, features, labels):
l = loss(net(X, w, b), y).sum()
# calculate the gradient of batch sample loss
l.backward()
# 使用小批量随机梯度下降迭代模型参数
sgd([w, b], lr, batch_size)
# reset parameter gradient
w.grad.data.zero_()
b.grad.data.zero_()
train_l = loss(net(features, w, b), labels)
print('epoch %d, loss %f' % (epoch + 1, train_l.mean().item()))
w, true_w, b, true_b
#线性回归模型使用pytorch的简洁实现
import torch
from torch import nn
import numpy as np
torch.manual_seed(1)
print(torch.__version__)
torch.set_default_tensor_type('torch.FloatTensor')
#读取数据集
import torch.utils.data as Data
batch_size = 10
# combine featues and labels of dataset
dataset = Data.TensorDataset(features, labels)
# put dataset into DataLoader
data_iter = Data.DataLoader(
dataset=dataset, # torch TensorDataset format
batch_size=batch_size, # mini batch size
shuffle=True, # whether shuffle the data or not
num_workers=2, # read data in multithreading
)
for X, y in data_iter:
print(X, '\n', y)
break
#定义模型
class LinearNet(nn.Module):
def __init__(self, n_feature):
super(LinearNet, self).__init__() # 调用父函数来初始化
self.linear = nn.Linear(n_feature, 1) # 函数原型:`torch.nn.Linear(in_features, out_features,bias=True)
def forward(self, x):
y = self.linear(x)
return y
net = LinearNet(num_inputs) #实例化
print(net)
#初始化多层网络的方法
# 方法一
net = nn.Sequential(
nn.Linear(num_inputs, 1)
# other layers can be added here
)
# 方法二
net = nn.Sequential()
net.add_module('linear', nn.Linear(num_inputs, 1))
# net.add_module ......
# 方法三
from collections import OrderedDict
net = nn.Sequential(OrderedDict([
('linear', nn.Linear(num_inputs, 1))
# ......
]))
print(net)
print(net[0])
#初始化模型参数
from torch.nn import init
init.normal_(net[0].weight, mean=0.0, std=0.01)
init.constant_(net[0].bias, val=0.0) # or you can use `net[0].bias.data.fill_(0)` to modify it directly
for param in net.parameters():
print(param)
#定义损失函数
loss = nn.MSELoss() # nn 内置平方损失函数
# function prototype: `torch.nn.MSELoss(size_average=None, reduce=None, reduction='mean')`
#定义优化函数
import torch.optim as optim
optimizer = optim.SGD(net.parameters(), lr=0.03) # built-in random gradient descent function
print(optimizer) # function prototype: `torch.optim.SGD(params, lr=, momentum=0, dampening=0, weight_decay=0, nesterov=False)`
#训练
num_epochs = 3
for epoch in range(1, num_epochs + 1):
for X, y in data_iter:
output = net(X)
l = loss(output, y.view(-1, 1))
optimizer.zero_grad() # reset gradient, equal to net.zero_grad()
l.backward()
optimizer.step()
print('epoch %d, loss: %f' % (epoch, l.item()))
#结果比较
dense = net[0]
print(true_w, dense.weight.data)
print(true_b, dense.bias.data)